971 resultados para mass-spectrometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated carbon was prepared from date pits via chemical activation with H3PO4. The effects of activating agent concentration and activation temperature on the yield and surface area were studied. The optimal activated carbon was prepared at 450 °C using 55 % H3PO4. The prepared activated carbon was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermal analysis, and Brunauer, Emmett, and Teller (BET) surface area. The prepared date pit-based activated carbon (DAC) was used for the removal of bromate (BrO3 −). The concentration of BrO3 − was determined by ultra-performance liquid chromatography-mass tandem spectrometry (UPLC-MS/MS). The experimental equilibrium data for BrO3 − adsorption onto DAC was well fitted to the Langmuir isotherm model and showed maximum monolayer adsorption capacity of 25.64 mg g−1. The adsorption kinetics of BrO3 − adsorption was very well represented by the pseudo-first-order equation. The analytical application of DAC for the analysis of real water samples was studied with very promising results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To study the in vivo metabolism of kurarinone, a lavandulyl flavanone which is a major constituent of Kushen and a marker compound with many biological activities, using ultra-performance liquid chromatography coupled with linear ion trap Orbitrap mass spectrometry (UPLC-LTQ-Orbitrap- MS). Methods: Six male Sprague-Dawley rats were randomly divided into two groups. First, kurarinone was suspended in 0.5 % carboxymethylcellulose sodium (CMC-Na) aqueous solution, and was given to rats (n = 3, 2 mL for each rat) orally at 50 mg/kg. A 2 mL aliquot of 0.5 % CMC-Na aqueous solution was administered to the rats in the control group. Next, urine samples were collected over 0-24 h after the oral administrations and all urine samples were pretreated by a solid phase extraction (SPE) method. Finally, all samples were analyzed by a UPLC-LTQ-Orbitrap mass spectrometry coupled with an electrospray ionization source (ESI) that was operated in the negative ionization mode. Results: A total of 11 metabolites, including the parent drug and 10 phase II metabolites in rat urine, were first detected and interpreted based on accurate mass measurement, fragment ions, and chromatographic retention times. The results were based on the assumption that kurarinone glucuronidation was the dominant metabolite that was excreted in rat urine. Conclusion: The results from this work indicate that kurarinone in vivo is typically transformed to nontoxic glucuronidation metabolites, and these findings may help to characterize the metabolic profile of kurarinone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents investigations of chemical reactions occurring at the liquid/vapor interface studied using novel sampling methodologies coupled with detection by mass spectrometry. Chapters 2 and 3 utilize the recently developed technique of field-induced droplet ionization mass spectrometry (FIDI-MS), in which the application of a strong electric field to a pendant microliter droplet results in the ejection of highly charged progeny droplets from the liquid surface. In Chapter 2, this method is employed to study the base-catalyzed dissociation of a surfactant molecule at the liquid/vapor interface upon uptake of ammonia from the gas phase. This process is observed to occur without significant modulation of the bulk solution pH, suggesting a transient increase in surface pH following the uptake of gaseous ammonia. Chapter 3 presents real-time studies of the oxidation of the model tropospheric organic compound glycolaldehyde by photodissociation of iron (III) oxalate complexes. The oxidation products of glycolaldehyde formed in this process are identified, and experiments in a deoxygenated environment identify the role of oxygen in the oxidation pathway and in the regeneration of iron (III) following photo-initiated reduction. Chapter 4 explores alternative methods for the study of heterogeneous reaction processes by mass spectrometric sampling from liquid surfaces. Bursting bubble ionization (BBI) and interfacial sampling with an acoustic transducer (ISAT) generate nanoliter droplets from a liquid surface that can be sampled via the atmospheric pressure interface of a mass spectrometer. Experiments on the oxidation of oleic acid by ozone using ISAT are also presented. Chapters 5 and 6 detail mechanistic studies and applications of free-radical-initiated peptide sequencing (FRIPS), a technique employing gas-phase free radical chemistry to the sequencing of peptides and proteins by mass spectrometry. Chapter 5 presents experimental and theoretical studies on the anomalous mechanism of dissociation observed in the presence of serine and threonine residues in peptides. Chapter 6 demonstrates the combination of FRIPS with ion mobility-mass spectrometry (IM-MS) for the separation of isomeric peptides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive method for the analysis of 11 target pharmaceuticals representing multiple therapeutic classes was developed for biological tissues (fish) and water. Water samples were extracted using solid phase extraction (SPE), while fish tissue homogenates were extracted using accelerated solvent extraction (ASE) followed by mixed-mode cation exchange SPE cleanup and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Among the 11 target pharmaceuticals analyzed, trimethoprim, caffeine, sulfamethoxazole, diphenhydramine, diltiazem, carbamazepine, erythromycin and fluoxetine were consistently detected in reclaimed water. On the other hand, caffeine, diphenhydramine and carbamazepine were consistently detected in fish and surface water samples. In order to understand the uptake and depuration of pharmaceuticals as well as bioconcentration factors (BCFs) under the worst-case conditions, mosquito fish were exposed to reclaimed water under static-renewal for 7 days, followed by a 14-day depuration phase in clean water. Characterization of the exposure media revealed the presence of 26 pharmaceuticals while 5 pharmaceuticals including caffeine, diphenhydramine, diltiazem, carbamazepine, and ibuprofen were present in the organisms as early as 5 h from the start of the exposure. Liquid chromatography ultra-high resolution Orbitrap mass spectrometry was explored as a tool to identify and quantify phase II pharmaceutical metabolites in reclaimed water. The resulting data confirmed the presence of acetyl-sulfamethoxazole and sulfamethoxazole glucuronide in reclaimed water. To my knowledge, this is the first known report of sulfamethoxazole glucuronide surviving intact through wastewater treatment plants and occurring in environmental water samples. Finally, five bioaccumulative pharmaceuticals including caffeine, carbamazepine, diltiazem, diphenhydramine and ibuprofen detected in reclaimed water were investigated regarding the acute and chronic risks to aquatic organisms. The results indicated a low potential risk of carbamazepine even under the worst case exposure scenario. Given the dilution factors that affect environmental releases, the risk of exposure to carbamazepine will be even more reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The drugs studied in this work have been reportedly used to commit drug-facilitated sexual assault (DFSA), commonly known as "date rape". Detection of the drugs was performed using high-performance liquid chromatography with ultraviolet detection (HPLC/UV) and identified with high performance-liquid chromatography mass spectrometry (HPLC/MS) using selected ion monitoring (SIM). The objective of this study was to develop a single HPLC method for the simultaneous detection, identification and quantitation of these drugs. The following drugs were simultaneously analyzed: Gamma-hydroxybutyrate (GHB), scopolamine, lysergic acid diethylamide, ketamine, flunitrazepam, and diphenhydramine. The results showed increased sensitivity with electrospray (ES) ionization versus atmospheric pressure chemical ionization (APCI) using HPLC/MS. HPLC/ES/MS was approximately six times more sensitive than HPLC/APCI/MS and about fifty times more sensitive than HPLC/UV. A limit of detection (LOD) of 100 ppb was achieved for drug analysis using this method. The average linear regression coefficient of correlation squared (r2) was 0.933 for HPLC/UV and 0.998 for HPLC/ES/MS. The detection limits achieved by this method allowed for the detection of drug dosages used in beverage tampering. This method can be used to screen beverages suspected of drug tampering. The results of this study demonstrated that solid phase microextraction (SPME) did not improve sensitivity as an extraction technique when compared to direct injections of the drug standards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An automated on-line SPE-LC-MS/MS method was developed for the quantitation of multiple classes of antibiotics in environmental waters. High sensitivity in the low ng/L range was accomplished by using large volume injections with 10-mL of sample. Positive confirmation of analytes was achieved using two selected reaction monitoring (SRM) transitions per antibiotic and quantitation was performed using an internal standard approach. Samples were extracted using online solid phase extraction, then using column switching technique; extracted samples were immediately passed through liquid chromatography and analyzed by tandem mass spectrometry. The total run time per each sample was 20 min. The statistically calculated method detection limits for various environmental samples were between 1.2 and 63 ng/L. Furthermore, the method was validated in terms of precision, accuracy and linearity. The developed analytical methodology was used to measure the occurrence of antibiotics in reclaimed waters (n=56), surface waters (n=53), ground waters (n=8) and drinking waters (n=54) collected from different parts of South Florida. In reclaimed waters, the most frequently detected antibiotics were nalidixic acid, erythromycin, clarithromycin, azithromycin trimethoprim, sulfamethoxazole and ofloxacin (19.3-604.9 ng/L). Detection of antibiotics in reclaimed waters indicates that they can’t be completely removed by conventional wastewater treatment process. Furthermore, the average mass loads of antibiotics released into the local environment through reclaimed water were estimated as 0.248 Kg/day. Among the surface waters samples, Miami River (reaching up to 580 ng/L) and Black Creek canal (up to 124 ng/L) showed highest concentrations of antibiotics. No traces of antibiotics were found in ground waters. On the other hand, erythromycin (monitored as anhydro erythromycin) was detected in 82% of the drinking water samples (n.d-66 ng/L). The developed approach is suitable for both research and monitoring applications. Major metabolites of antibiotics in reclaimed wates were identified and quantified using high resolution benchtop Q-Exactive orbitrap mass spectrometer. A phase I metabolite of erythromycin was tentatively identified in full scan based on accurate mass measurement. Using extracted ion chromatogram (XIC), high resolution data-dependent MS/MS spectra and metabolic profiling software the metabolite was identified as desmethyl anhydro erythromycin with molecular formula C36H63NO12 and m/z 702.4423. The molar concentration of the metabolite to erythromycin was in the order of 13 %. To my knowledge, this is the first known report on this metabolite in reclaimed water. Another compound acetyl-sulfamethoxazole, a phase II metabolite of sulfamethoxazole was also identified in reclaimed water and mole fraction of the metabolite represent 36 %, of the cumulative sulfamethoxazole concentration. The results were illustrating the importance to include metabolites also in the routine analysis to obtain a mass balance for better understanding of the occurrence, fate and distribution of antibiotics in the environment. Finally, all the antibiotics detected in reclaimed and surface waters were investigated to assess the potential risk to the aquatic organisms. The surface water antibiotic concentrations that represented the real time exposure conditions revealed that the macrolide antibiotics, erythromycin, clarithromycin and tylosin along with quinolone antibiotic, ciprofloxacin were suspected to induce high toxicity to aquatic biota. Preliminary results showing that, among the antibiotic groups tested, macrolides posed the highest ecological threat, and therefore, they may need to be further evaluated with, long-term exposure studies considering bioaccumulation factors and more number of species selected. Overall, the occurrence of antibiotics in aquatic environment is posing an ecological health concern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for µXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for µXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for µXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid chromatography coupled with mass spectrometry is one of the most powerful tools in the toxicologist’s arsenal to detect a wide variety of compounds from many different matrices. However, the huge number of potentially abused substances and new substances especially designed as intoxicants poses a problem in a forensic toxicology setting. Most methods are targeted and designed to cover a very specific drug or group of drugs while many other substances remain undetected. High resolution mass spectrometry, more specifically time-of-flight mass spectrometry, represents an extremely powerful tool in analysing a multitude of compounds not only simultaneously but also retroactively. The data obtained through the time-of-flight instrument contains all compounds made available from sample extraction and chromatography, which can be processed at a later time with an improved library to detect previously unrecognised compounds without having to analyse the respective sample again. The aim of this project was to determine the utility and limitations of time-of-flight mass spectrometry as a general and easily expandable screening method. The resolution of time-of-flight mass spectrometry allows for the separation of compounds with the same nominal mass but distinct exact masses without the need to separate them chromatographically. To simulate the wide variety of potentially encountered drugs in such a general screening method, seven drugs (morphine, cocaine, zolpidem, diazepam, amphetamine, MDEA and THC) were chosen to represent this variety in terms of mass, properties and functional groups. Consequently, several liquid-liquid and solid phase extractions were applied to urine samples to determine the most general suitable and unspecific extraction. Chromatography was optimised by investigating the parameters pH, concentration, organic solvent and gradient of the mobile phase to improve data obtained by the time-of-flight instrument. The resulting method was validated as a qualitative confirmation/identification method. Data processing was automated using the software TargetAnalysis, which provides excellent analyte recognition according to retention time, exact mass and isotope pattern. The recognition of isotope patterns allows excellent recognition of analytes even in interference rich mass spectra and proved to be a good positive indicator. Finally, the validated method was applied to samples received from the A& E Department of Glasgow Royal Infirmary in suspected drug abuse cases and samples received from the Scottish Prison Service, which we received from their own prevalence study targeting drugs of abuse in the prison population. The obtained data was processed with a library established in the course of this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen design is generally driven by the need to obtain enhanced stability,efficiency and safety in vaccines.Unfortunately,the antigen modification is rarely proceeded in parallel with analytical tools development characterization.The analytical tools set up is required during steps of vaccine manufacturing pipeline,for vaccine production modifications,improvements or regulatory requirements.Despite the relevance of bioconjugate vaccines,robust and consistent analytical tools to evaluate the extent of carrier glycosylation are missing.Bioconjugation is a glycoengineering technology aimed to produce N-glycoprotein in vivo in E.coli cells,based on the PglB-dependent system by C. jejuni,applied for production of several glycoconjugate vaccines.This applicability is due to glycocompetent E. coli ability to produce site-selective glycosylated protein used,after few purification steps, as vaccines able to elicit both humoral and cell-mediate immune-response.Here, S.aureus Hla bioconjugated with CP5 was used to perform rational analytical-driven design of the glycosylation sites for the glycosylation extent quantification by Mass Spectrometry.The aim of the study was to develop a MS-based approach to quantify the glycosylation extent for in-process monitoring of bioconjugate production and for final product characterization.The three designed consensus sequences differ for a single amino-acid residue and fulfill the prerequisites for engineered bioconjugate more appropriate from an analytical perspective.We aimed to achieve an optimal MS detectability of the peptide carrying the consensus sequences,complying with the well-characterized requirements for N-glycosylation by PglB.Hla carrier isoforms,bearing these consensus sequences allowed a recovery of about 20 ng/μg of periplasmic protein glycosylated at 40%.The SRM-MS here developed was successfully applied to evaluate the differential site occupancy when carrier protein present two glycosites.The glycosylation extent in each glycosite was determined and the difference in the isoforms were influenced either by the overall source of protein produced and by the position of glycosite insertion.The analytical driven design of the bioconjugated antigen and the development of accurate,precise and robust analytical method allowed to finely characterize the vaccine.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes methods for the direct determination of Cd and Pb in hair segments (c.a. 5 mm similar to 80 mu g) by solid sampling graphite furnace atomic absorption spectrometry, becoming possible longitudinal profiles in a single strand of hair. To distinguish endogenous and exogenous content. strands of hair were washed by using two different procedures: IAEA protocol (acetone + water + acetone) and the combination of IAEA protocol with HCl washing (acetone + water + acetone + 0.1 mol l(-1) HCl). The concentration of Cd and Pb increased from the root Until the tip of hair washed according to IAEA protocol. However, when the strand of hair was washed using the combination of IAEA protocol and 0.1 mol l(-1) HCl, Cd concentrations decreased in all segments, and Pb concentrations decreased drastically near to the root (5 to 12 mm) and was systematically higher ill the end. The proposed method showed to be useful to assess the temporal variation to Cd and Pb exposure and call be Used for toxicological and environmental investigations. The limits of detection were 2.8 ng g(-1) for Cd and 40 ng g(-1) for Pb. The characteristic masses based oil integrated absorbance were 2.4 pg for Cd and 22 pg for Pb.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The performance of laser-induced breakdown spectrometry (LIBS) for the determination of Ba, Cd, Cr and Pb in toys has been evaluated by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with intensified charge-coupled device detector. Samples were purchased in different cities of Sao Paulo State market and analyzed directly without sample preparation. Laser-induced breakdown spectrometry experimental conditions (number of pulses, delay time. integration time gate and pulse energy) were optimized by using a Doehlert design. Laser-induced breakdown spectrometry signals correlated reasonably well with inductively coupled plasma optical emission spectrometry (ICP OES) concentrations after microwave-assisted acid digestion of selected samples. Thermal analysis was used for polymer identification and scanning electron microscopy to Visualize differences in crater geometry of different polymers employed for toy fabrication. Results indicate that laser-induced breakdown spectrometry can be proposed as a rapid screening method for investigation of potentially toxic elements in toys. The unique application of laser-induced breakdown spectrometry for identification of contaminants in successive layers of ink and polymer is also demonstrated. (C) 2009 Elsevier B.V. All rights reserved.