927 resultados para mRNA export


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small non-protein-coding RNAs (ncRNAs) are key players in controlling gene expression. The advantage of ncRNA regulators is their almost immediate availability since they act on the RNA level. The list of validated ncRNAs regulating translation, such as micro RNAs, is growing steadily, however, they almost exclusively target the mRNA rather than the ribosome. This is unexpected given the central position the ribosome plays. Here we show that an mRNA-derived 18 nucleotide long ncRNA is capable of down-regulating translation in Saccharomyces cerevisiae by targeting the ribosome. This 18-mer ncRNA binds to polysomes upon salt stress and is crucial for efficient growth. Although the 18-mer RNA originates from the TRM10 locus, which encodes a tRNA methyltransferase, genetic analyses revealed the 18-mer RNA nucleotide sequence as the translation regulator. Our data reveal the ribosome as a target for a small regulatory ncRNA and demonstrate the existence of a yet unknown mechanism of translation regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition from the nonlactating to the lactating state represents a critical period for dairy cow lipid metabolism because body reserves have to be mobilized to meet the increasing energy requirements for the initiation of milk production. The purpose of this study was to provide a comprehensive overview on cholesterol homeostasis in transition dairy cows by assessing in parallel plasma, milk, and hepatic tissue for key factors of cholesterol metabolism, transport, and regulation. Blood samples and liver biopsies were taken from 50 multiparous Holstein dairy cows in wk 3 antepartum (a.p.), wk 1 postpartum (p.p.), wk 4 p.p., and wk 14 p.p. Milk sampling was performed in wk 1, 4, and 14 p.p. Blood and milk lipid concentrations [triglycerides (TG), cholesterol, and lipoproteins], enzyme activities (phospholipid transfer protein and lecithin:cholesterol acyltransferase) were analyzed using enzymatic assays. Hepatic gene expression patterns of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGC) synthase 1 (HMGCS1) and HMGC reductase (HMGCR), sterol regulatory element-binding factor (SREBF)-1 and -2, microsomal triglyceride transfer protein (MTTP), ATP-binding cassette transporter (ABC) A1 and ABCG1, liver X receptor (LXR) α and peroxisome proliferator activated receptor (PPAR) α and γ were measured using quantitative RT-PCR. Plasma TG, cholesterol, and lipoprotein concentrations decreased from wk 3 a.p. to a minimum in wk 1 p.p., and then gradually increased until wk 14 p.p. Compared with wk 4 p.p., phospholipid transfer protein activity was increased in wk 1 p.p., whereas lecithin:cholesterol acyltransferase activity was lowest at this period. Total cholesterol concentration and mass, and cholesterol concentration in the milk fat fraction decreased from wk 1 p.p. to wk 4 p.p. Both total and milk fat cholesterol concentration were decreased in wk 4 p.p. compared with wk 1 and 14 p.p. The mRNA abundance of genes involved in cholesterol synthesis (SREBF-2, HMGCS1, and HMGCR) markedly increased from wk 3 a.p. to wk 1 p.p., whereas SREBF-1 was downregulated. The expression of ABCA1 increased from wk 3 a.p. to wk 1 p.p., whereas ABCG1 was increased in wk 14 p.p. compared with other time points. In conclusion, hepatic expression of genes involved in the biosynthesis of cholesterol as well as the ABCA1 transporter were upregulated at the onset of lactation, whereas plasma concentrations of total cholesterol, phospholipids, lipoprotein-cholesterol, and TG were at a minimum. Thus, at the gene expression level, the liver seems to react to the increased demand for cholesterol after parturition. Whether the low plasma cholesterol and TG levels are due to impaired hepatic export mechanisms or reflect an enhanced transfer of these compounds into the milk to provide essential nutrients for the newborn remains to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UNLABELLED Adenovirus dodecahedron (Dd), a nanoparticulate proteinaceous biodegradable virus-like particle (VLP), was used as a vector for delivery of an oncogene inhibitor to hepatocellular carcinoma (HCC) rat orthotopic model. Initiation factor eIF4E is an oncogene with elevated expression in human cancers. Cell-impermeant eIF4E inhibitor, cap structure analog (cap) and anti-cancer antibiotic doxorubicin (Dox) were delivered as Dd conjugates. Dd-cap and Dd-dox inhibited cancer cell culture proliferation up to 50 and 84%, respectively, while with free Dox similar results could be obtained only at a 5 times higher concentration. In animal HCC model the combination treatment of Dd-cap/Dd-dox caused 40% inhibition of tumor growth. Importantly, the level of two pro-oncogenes, eIF4E and c-myc, was significantly diminished in tumor sections of treated rats. Attachment to Dd, a virus-like particle, permitted the first demonstration of cap analog intracellular delivery and resulted in improved doxorubicin delivery leading to statistically significant inhibition of HCC tumor growth. FROM THE CLINICAL EDITOR Adenovirus dodecahedron, a nanoparticulate proteinaceous biodegradable virus-like particle was used in this study as a vector for the concomitant delivery of cap structure analog and doxorubicine to hepatocellular carcinoma in a rat model, resulting in significant inhibition of tumor growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most cases of Duchenne muscular dystrophy are caused by dystrophin gene mutations that disrupt the mRNA reading frame. Artificial exclusion (skipping) of a single exon would often restore the reading frame, giving rise to a shorter, but still functional dystrophin protein. Here, we analyzed the ability of antisense U7 small nuclear (sn)RNA derivatives to alter dystrophin pre-mRNA splicing. As a proof of principle, we first targeted the splice sites flanking exon 23 of dystrophin pre-mRNA in the wild-type muscle cell line C2C12 and showed precise exon 23 skipping. The same strategy was then successfully adapted to dystrophic immortalized mdx muscle cells where exon-23-skipped dystrophin mRNA rescued dystrophin protein synthesis. Moreover, we observed a stimulation of antisense U7 snRNA expression by the murine muscle creatine kinase enhancer. These results demonstrate that alteration of dystrophin pre-mRNA splicing could correct dystrophin gene mutations by expression of specific U7 snRNA constructs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of replication-dependent histone genes requires a conserved hairpin RNA element in the 3' untranslated regions of poly(A)-less histone mRNAs. The 3' hairpin element is recognized by the hairpin-binding protein or stem-loop-binding protein (HBP/SLBP). This protein-RNA interaction is important for the endonucleolytic cleavage generating the mature mRNA 3' end. The 3' hairpin and presumably HBP/SLBP are also required for nucleocytoplasmic transport, translation, and stability of histone mRNAs. RNA 3' processing and mRNA stability are both regulated during the cell cycle. Here, we have determined the three-dimensional structure of a 24-mer RNA comprising a mammalian histone RNA hairpin using heteronuclear multidimensional NMR spectroscopy. The hairpin adopts a novel UUUC tetraloop conformation that is stabilized by base stacking involving the first and third loop uridines and a closing U-A base pair, and by hydrogen bonding between the first and third uridines in the tetraloop. The HBP interaction of hairpin RNA variants was analyzed in band shift experiments. Particularly important interactions for HBP recognition are mediated by the closing U-A base pair and the first and third loop uridines, whose Watson-Crick functional groups are exposed towards the major groove of the RNA hairpin. The results obtained provide novel structural insight into the interaction of the histone 3' hairpin with HBP, and thus the regulation of histone mRNA metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As in all metazoans, the replication-dependent histone genes of Caenorhabditis elegans lack introns and contain a short hairpin structure in the 3' untranslated region. This hairpin structure is a key element for post-transcriptional regulation of histone gene expression and determines mRNA 3' end formation, nuclear export, translation and mRNA decay. All these steps contribute to the S-phase-specific expression of the replication-dependent histone genes. The hairpin structure is the binding site for histone hairpin-binding protein that is required for hairpin-dependent regulation. Here, we demonstrate that the C. elegans histone hairpin-binding protein gene is transcribed in dividing cells during embryogenesis and postembryonic development. Depletion of histone hairpin-binding protein (HBP) function in early embryos using RNA-mediated interference leads to an embryonic-lethal phenotype brought about by defects in chromosome condensation. A similar phenotype was obtained by depleting histones H3 and H4 in early embryos, indicating that the defects in hairpin-binding protein-depleted embryos are caused by reduced histone biosynthesis. We have confirmed this by showing that HBP depletion reduces histone gene expression. Depletion of HBP during postembryonic development also results in defects in cell division during late larval development. In addition, we have observed defects in the specification of vulval cell fate in animals depleted for histone H3 and H4, which indicates that histone proteins are required for cell fate regulation during vulval development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of alternative splicing for the diversity of the proteome and the large number of genetic diseases that are due to splicing defects call for methods to modulate alternative splicing decisions. Although splicing can be modulated by antisense oligonucleotides, this approach is confronted with problems of efficient delivery and the need for repeated administrations of large amounts of the oligonucleotides. Therefore we have developed methods allowing us to modulate splicing with the help of modified derivatives of the U7 small nuclear RNA involved in histone RNA 3' end processing. Its nuclear accumulation as a stable ribonucleoprotein particle makes U7 snRNA especially useful for this purpose. In particular, U7 derivatives containing two tandem antisense sequences directed against targets upstream and downstream of an exon can induce the efficient and specific skipping of that exon. U7 expression cassettes have been successfully introduced into a great number of cell lines, primary cells or tissues with the help of lentiviral and adeno-associated viral vectors. Examples of these therapeutic strategies in the fields of β-thalassemia, Duchenne muscular dytrophy and HIV/AIDS are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biological effect of oxidatively damaged RNA, unlike oxidatively damaged DNA, has rarely been investigated, although it poses a threat to any living cell. Here we report on the effect of the commonly known RNA base-lesions 8-oxo-rG, 8-oxo-rA, ε-rC, ε-rA, 5-HO-rC, 5-HO-rU and the RNA abasic site (rAS) on ribosomal translation. To this end we have developed an in vitro translation assay based on the mRNA display methodology. A short synthetic mRNA construct containing the base lesion in a predefined position of the open reading frame was 32P-labeled at the 5′-end and equipped with a puromycin unit at the 3′-end. Upon in vitro translation in rabbit reticulocyte lysates, the encoded peptide chain is transferred to the puromycin unit and the products analyzed by gel electrophoresis. Alternatively, the unlabeled mRNA construct was used and incubated with 35S-methionine to prove peptide elongation of the message. We find that all base-lesions interfere substantially with ribosomal translation. We identified two classes, the first containing modifications at the base coding edge (ε-rC, ε-rA and rAS) which completely abolish peptide synthesis at the site of modification, and the second consisting of 8-oxo-rG, 8-oxo-rA, 5-HO-rC and 5-HO-rU that significantly retard full-length peptide synthesis, leading to some abortive peptides at the site of modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a firearm projectile hits a biological target a spray of biological material (e.g., blood and tissue fragments) can be propelled from the entrance wound back towards the firearm. This phenomenon has become known as "backspatter" and if caused by contact shots or shots from short distances traces of backspatter may reach, consolidate on, and be recovered from, the inside surfaces of the firearm. Thus, a comprehensive investigation of firearm-related crimes must not only comprise of wound ballistic assessment but also backspatter analysis, and may even take into account potential correlations between these emergences. The aim of the present study was to evaluate and expand the applicability of the "triple contrast" method by probing its compatibility with forensic analysis of nuclear and mitochondrial DNA and the simultaneous investigation of co-extracted mRNA and miRNA from backspatter collected from internal components of different types of firearms after experimental shootings. We demonstrate that "triple contrast" stained biological samples collected from the inside surfaces of firearms are amenable to forensic co-analysis of DNA and RNA and permit sequence analysis of the entire mtDNA displacement-loop, even for "low template" DNA amounts that preclude standard short tandem repeat DNA analysis. Our findings underscore the "triple contrast" method's usefulness as a research tool in experimental forensic ballistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 3' ends of animal replication-dependent histone mRNAs are formed by endonucleolytic cleavage of the primary transcripts downstream of a highly conserved RNA hairpin. The hairpin-binding protein (HBP) binds to this RNA element and is involved in histone RNA 3' processing. A minimal RNA-binding domain (RBD) of approximately 73 amino acids that has no similarity with other known RNA-binding motifs was identified in human HBP [Wang Z-F et al., Genes & Dev, 1996, 10:3028-3040]. The primary sequence identity between human and Caenorhabditis elegans RBDs is 55% compared to 38% for the full-length proteins. We analyzed whether differences between C. elegans and human HBP and hairpins are reflected in the specificity of RNA binding. The C. elegans HBP and its RBD recognize only their cognate RNA hairpins, whereas the human HBP or RBD can bind both the mammalian and the C. elegans hairpins. This selectivity of C. elegans HBP is mostly mediated by the first nucleotide in the loop, which is C in C. elegans and U in all other metazoans. By converting amino acids in the human RBD to the corresponding C. elegans residues at places where the latter deviates from the consensus, we could identify two amino acid segments that contribute to selectivity for the first nucleotide of the hairpin loop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone RNA 3' processing in vitro produces one or more 5' cleavage products corresponding to the mature histone mRNA 3' end, and a group of 3' cleavage products whose 5' ends are mostly located several nucleotides downstream of the mRNA 3' end. The formation of these 3' products is coupled to the formation of 5' products and dependent on the U7 snRNP and a heat-labile processing factor. These short 3' products therefore are a true and general feature of the processing reaction. Identical 3' products are also formed from a model RNA containing all spacer nucleotides downstream of the mature mRNA 3' end, but no sequences from the mature mRNA. Again, this reaction is dependent on both the U7 snRNP and a heat-labile factor. Unlike the processing with a full-length histone pre-mRNA, this reaction produces only 3' but no 5' fragments. In addition, product formation is inhibited by addition of cap structures at the model RNA 5' end, indicating that product formation occurs by 5'-3' exonucleolytic degradation. This degradation of a model 3' product by a 5'-3' exonuclease suggests a mechanism for the release of the U7 snRNP after processing by shortening the cut-off histone spacer sequences base paired to U7 RNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In several forms of beta-thalassemia, mutations in the second intron of the beta-globin gene create aberrant 5' splice sites and activate a common cryptic 3' splice site upstream. As a result, the thalassemic beta-globin pre-mRNAs are spliced almost exclusively via the aberrant splice sites leading to a deficiency of correctly spliced beta-globin mRNA and, consequently, beta-globin. We have designed a series of vectors that express modified U7 snRNAs containing sequences antisense to either the aberrant 5' or 3' splice sites in the IVS2-705 thalassemic pre-mRNA. Transient expression of modified U7 snRNAs in a HeLa cell line stably expressing the IVS2-705 beta-globin gene restored up to 65% of correct splicing in a sequence-specific and dose-dependent manner. Cell lines that stably coexpressed IVS2-705 pre-mRNA and appropriately modified U7 snRNA exhibited up to 55% of permanent restoration of correct splicing and expression of full-length beta-globin protein. This novel approach provides a potential alternative to gene replacement therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A histone H4 gene from Ascaris lumbricoides contains an intron of approx. 2040 bp. Transcripts of the gene are spliced and polyadenylated. This is the first intron-containing H4 gene described for a metazoan. Notably, H4 mRNA from another nematode, Caenorhabditis elegans, is intron-less and lacks poly A (Roberts, S.B., Emmons, S.W. and Childs, G. (1989) J. Mol. Biol. 206, 567-577).