934 resultados para logic gate
Resumo:
WHIRLBOB, also known as STRIBOBr2, is an AEAD (Authenticated Encryption with Associated Data) algorithm derived from STRIBOBr1 and the Whirlpool hash algorithm. WHIRLBOB/STRIBOBr2 is a second round candidate in the CAESAR competition. As with STRIBOBr1, the reduced-size Sponge design has a strong provable security link with a standardized hash algorithm. The new design utilizes only the LPS or ρ component of Whirlpool in flexibly domain-separated BLNK Sponge mode. The number of rounds is increased from 10 to 12 as a countermeasure against Rebound Distinguishing attacks. The 8 ×8 - bit S-Box used by Whirlpool and WHIRLBOB is constructed from 4 ×4 - bit “MiniBoxes”. We report on fast constant-time Intel SSSE3 and ARM NEON SIMD WHIRLBOB implementations that keep full miniboxes in registers and access them via SIMD shuffles. This is an efficient countermeasure against AES-style cache timing side-channel attacks. Another main advantage of WHIRLBOB over STRIBOBr1 (and most other AEADs) is its greatly reduced implementation footprint on lightweight platforms. On many lower-end microcontrollers the total software footprint of π+BLNK = WHIRLBOB AEAD is less than half a kilobyte. We also report an FPGA implementation that requires 4,946 logic units for a single round of WHIRLBOB, which compares favorably to 7,972 required for Keccak / Keyak on the same target platform. The relatively small S-Box gate count also enables efficient 64-bit bitsliced straight-line implementations. We finally present some discussion and analysis on the relationships between WHIRLBOB, Whirlpool, the Russian GOST Streebog hash, and the recent draft Russian Encryption Standard Kuznyechik.
Resumo:
Structural and functional information encoded in DNA combined with unique properties of nanomaterials could be of use for the construction of novel biocomputational circuits and intelligent biomedical nanodevices. However, at present their practical applications are still limited by either low reproducibility of fabrication, modest sensitivity, or complicated handling procedures. Here, we demonstrate the construction of label-free and switchable molecular logic gates (AND, INHIBIT, and OR) that use specific conformation modulation of a guanine- and thymine-rich DNA, while the optical readout is enabled by the tunable metamaterials which serve as a substrate for surface enhanced Raman spectroscopy (MetaSERS). Our MetaSERS-based DNA logic is simple to operate, highly reproducible, and can be stimulated by ultra-low concentration of the external inputs, enabling an extremely sensitive detection of mercury ions down to 2×10-4 ppb, which is four orders of magnitude lower than the exposure limit allowed by United States Environmental Protection Agency
Resumo:
Current variation aware design methodologies, tuned for worst-case scenarios, are becoming increasingly pessimistic from the perspective of power and performance. A good example of such pessimism is setting the refresh rate of DRAMs according to the worst-case access statistics, thereby resulting in very frequent refresh cycles, which are responsible for the majority of the standby power consumption of these memories. However, such a high refresh rate may not be required, either due to extremely low probability of the actual occurrence of such a worst-case, or due to the inherent error resilient nature of many applications that can tolerate a certain number of potential failures. In this paper, we exploit and quantify the possibilities that exist in dynamic memory design by shifting to the so-called approximate computing paradigm in order to save power and enhance yield at no cost. The statistical characteristics of the retention time in dynamic memories were revealed by studying a fabricated 2kb CMOS compatible embedded DRAM (eDRAM) memory array based on gain-cells. Measurements show that up to 73% of the retention power can be saved by altering the refresh time and setting it such that a small number of failures is allowed. We show that these savings can be further increased by utilizing known circuit techniques, such as body biasing, which can help, not only in extending, but also in preferably shaping the retention time distribution. Our approach is one of the first attempts to access the data integrity and energy tradeoffs achieved in eDRAMs for utilizing them in error resilient applications and can prove helpful in the anticipated shift to approximate computing.
Resumo:
A key assumption of dual process theory is that reasoning is an explicit, effortful, deliberative process. The present study offers evidence for an implicit, possibly intuitive component of reasoning. Participants were shown sentences embedded in logically valid or invalid arguments. Participants were not asked to reason but instead rated the sentences for liking (Experiment 1) and physical brightness (Experiments 2-3). Sentences that followed logically from preceding sentences were judged to be more likable and brighter. Two other factors thought to be linked to implicit processing-sentence believability and facial expression-had similar effects on liking and brightness ratings. The authors conclude that sensitivity to logical structure was implicit, occurring potentially automatically and outside of awareness. They discuss the results within a fluency misattribution framework and make reference to the literature on discourse comprehension.
Resumo:
Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.
Resumo:
Research on how customers engage in the co-creation processes envisaged by the Servicedominant logic paradigm is currently limited and even less work has been published on frameworks for organizations to manage the co-creation process. This conceptual paper examines a particular aspect of co-creation: co-production as a result of the application of self-service technology (SST). We propose a conceptual framework for co-production, which emphasizes the need to understand productivity from the point of view of the customer, and demonstrate how this can be applied in both consumer (b2c) and interorganizational(b2b) contexts. We conclude that service organizations might benefit from clearly identifying co-production with task-performance, and co-creation with the valueattributing aspects of the customer service experience. Both aspects generate a range of design and management challenges for suppliers particularly the need to understand the cocreation process 'outputs' desired by customers and the full costs of moving away from person to person interaction.
Resumo:
Thesis (Master's)--University of Washington, 2015
Resumo:
Thesis (Master's)--University of Washington, 2015
Resumo:
This paper present a methodology to choose the distribution networks reconfiguration that presents the lower power losses. The proposed methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modeling for system component outage parameters. The proposed hybrid method using fuzzy sets and Monte Carlo simulation based on the fuzzyprobabilistic models allows catching both randomness and fuzziness of component outage parameters. A logic programming algorithm is applied, once obtained the system states by Monte Carlo Simulation, to get all possible reconfigurations for each system state. To evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation an AC load flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 115 buses distribution network.
Resumo:
After a historical introduction, the bulk of the thesis concerns the study of a declarative semantics for logic programs. The main original contributions are: ² WFSX (Well–Founded Semantics with eXplicit negation), a new semantics for logic programs with explicit negation (i.e. extended logic programs), which compares favourably in its properties with other extant semantics. ² A generic characterization schema that facilitates comparisons among a diversity of semantics of extended logic programs, including WFSX. ² An autoepistemic and a default logic corresponding to WFSX, which solve existing problems of the classical approaches to autoepistemic and default logics, and clarify the meaning of explicit negation in logic programs. ² A framework for defining a spectrum of semantics of extended logic programs based on the abduction of negative hypotheses. This framework allows for the characterization of different levels of scepticism/credulity, consensuality, and argumentation. One of the semantics of abduction coincides with WFSX. ² O–semantics, a semantics that uniquely adds more CWA hypotheses to WFSX. The techniques used for doing so are applicable as well to the well–founded semantics of normal logic programs. ² By introducing explicit negation into logic programs contradiction may appear. I present two approaches for dealing with contradiction, and show their equivalence. One of the approaches consists in avoiding contradiction, and is based on restrictions in the adoption of abductive hypotheses. The other approach consists in removing contradiction, and is based in a transformation of contradictory programs into noncontradictory ones, guided by the reasons for contradiction.
Resumo:
Dynamically reconfigurable SRAM-based field-programmable gate arrays (FPGAs) enable the implementation of reconfigurable computing systems where several applications may be run simultaneously, sharing the available resources according to their own immediate functional requirements. To exclude malfunctioning due to faulty elements, the reliability of all FPGA resources must be guaranteed. Since resource allocation takes place asynchronously, an online structural test scheme is the only way of ensuring reliable system operation. On the other hand, this test scheme should not disturb the operation of the circuit, otherwise availability would be compromised. System performance is also influenced by the efficiency of the management strategies that must be able to dynamically allocate enough resources when requested by each application. As those resources are allocated and later released, many small free resource blocks are created, which are left unused due to performance and routing restrictions. To avoid wasting logic resources, the FPGA logic space must be defragmented regularly. This paper presents a non-intrusive active replication procedure that supports the proposed test methodology and the implementation of defragmentation strategies, assuring both the availability of resources and their perfect working condition, without disturbing system operation.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e telecomunicações
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Eletrotécnica Ramo de Automação e Eletrónica Industrial