891 resultados para lipid microparticles
Resumo:
ESR spectra of spin probes were used to monitor lipid-protein interactions in native and cholesterol-enriched microsomal membranes. In both systems composite spectra were obtained, one characteristic of bulk bilayer organization and another due to a motionally restricted population, which was ascribed to lipids in a protein microenvironment. Computer spectral subtractions revealed that cholesterol modulates the order/mobility of both populations in opposite ways, i.e., while the lipid bilayer region gives rise to more anisotropic spectra upon cholesterol enrichment, the spectra of the motionally restricted population become indicative of increased mobility and/or decreased order. These events were evidenced by measurement of both effective order parameters and correlation times. The percentages of the motionally restricted component were invariant in native and cholesterol-enriched microsomes. Variable temperature studies also indicated a lack of variation of the percentages of both spectral components, suggesting that the motionally restricted one was not due to protein aggregation. The results correlate well with the effect of cholesterol enrichment on membrane-bound enzyme kinetics and on the behavior of fluorescent probes [Castuma & Brenner (1986) Biochemistry 25, 4733-4738]. Several hypothesis are put forward to explain the molecular mechanism of the cholesterol-induced spectral changes.
Resumo:
In previous studies, it was shown that lipid microemulsions resembling LDL (LDE) but not containing protein, acquire apolipoprotein E when injected into the bloodstream and bind to LDL receptors (LDLR) using this protein as ligand. Aiming to evaluate the effects of apolipoprotein (apo) B-100 on the catabolism of these microemulsions, LDE with incorporated apo B-100 (LDE-apoB) and native LDL, all labeled with radioactive lipids were studied after intraarterial injection into Wistar rats. Plasma decay curves of the labels were determined in samples collected over 10 h and tissue uptake was assayed from organs excised from the animals sacrificed 24 h after injection. LDE-apo B had a fractional clearance rate (FCR) similar to native LDL (0.40 and 0.33, respectively) but both had FCR pronouncedly smaller than LDE (0.56, P<0.01). Liver was the main uptake site for LDE, LDE-apoB, and native LDL, but LDE-apoB and native LDL had lower hepatic uptake rates than LDE. Pre-treatment of the rats with 17 alpha-ethinylestradiol, known to upregulate LDLR, accelerated the removal from plasma of both LDE and LDE-apoB, but the effect was greater upon LDE than LDE-apoB. These differences in metabolic behavior documented in vivo can be interpreted by the lower affinity of LDLR for apo B-100 than for apo E, demonstrated in in vitro studies. Therefore, our study shows in vivo that, in comparison with apo E, apo B is a less efficient ligand to remove lipid particles such as microemulsions or lipoproteins from the intravascular compartment. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers ( when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements.
Resumo:
Here we describe the application of microparticles (MPs) for the delivery and release of the drug a benzopsoralen. We also evaluated the intracellular distribution and cellular uptake of the drug by using an encapsulation technique for therapeutic optimization. MPs containing the compound 3-ethoxycarbonyl-2H-benzofuro[3,2-f]-1-benzopyran-2-one (psoralen A) were prepared by the solvent evaporation technique, and parameters such as particle size, drug encapsulation efficiency, effect of the encapsulation process on the drug's photochemistry, zeta potential, external morphology, and < i > in vitro release behavior were evaluated. The intracellular distribution of MPs as well as their uptake by tissues were monitored. Size distribution studies using dynamic ligh scattering and scanning electron microscopy revealed that the MPs are spherical in shape with a diameter of 1.4 mu m. They present low tendency toward aggregation, as confirmed by their zeta potential (+10.6 mV). The loading efficiency obtained was 75%. As a consequence of the extremely low diffusivity of the drug in aqueous medium, the drug release profile of the MPs in saline phosphate buffer (pH 7.4) was much slower than that obtained in the biological environment. Among the population of peritoneal phagocytic cells, only macrophages were able to phagocytose poly-d,l-lactic-co-glycolic acid (PLGA) MP. The use of psoralen A in association with ultraviolet light (360 nm) revealed morphological characteristics of cell damage such as cytoplasmic vesiculation, mitochondria condensation, and swelling of both the granular endoplasmatic reticulum and the nuclear membrane. These results indicate that PLGA MP could be a promising delivery system for psoralen in connection with ultraviolet irradiation therapy (PUVA).
Resumo:
Oxidative damage to biological membranes has been reported as a cause of alterations in many different diseases. We had previously reported lipid peroxidation in the kainic acid model of temporal epilepsy. In this study we evaluated earlier and later modifications in the lipid composition after status epileticus induced by kainic acid. Lipid composition was determined by thin-layer chromatography, in the cortex and hippocampus 12-14 h, 7-8, 75-80, or 140-150 days after the end of status epileticus. In the hippocampus there was a significant change in the lipid protein ratio after status epileticus and this was accompanied by an alteration in lipid composition in all tested times. These results suggested that lipid peroxidation induced by kainic acid could be accompanied by chronic changes in the lipid composition that could be related to the development of seizures.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)