947 resultados para lexical semantic
Resumo:
Il progetto QRPlaces - Semantic Events, oggetto di questo lavoro, focalizza l’attenzione sull’analisi, la progettazione e l’implementazione di un sistema che sia in grado di modellare i dati, relativi a diversi eventi facenti parte del patrimonio turistico - culturale della Regione Emilia Romagna 1, rendendo evidenti i vantaggi associati ad una rappresentazione formale incentrata sulla Semantica. I dati turistico - culturali sono intesi in questo ambito sia come una rappresentazione di “qualcosa che accade in un certo punto ad un certo momento” (come ad esempio un concerto, una sagra, una raccolta fondi, una rappresentazione teatrale e quant’altro) sia come tradizioni e costumi che costituiscono il patrimonio turistico-culturale e a cui si fa spesso riferimento con il nome di “Cultural Heritage”. Essi hanno la caratteristica intrinseca di richiedere una conoscenza completa di diverse informa- zioni correlata, come informazioni di geo localizzazione relative al luogo fisico che ospita l’evento, dati biografici riferiti all’autore o al soggetto che è presente nell’evento piuttosto che riferirsi ad informazioni che descrivono nel dettaglio tutti gli oggetti, come teatri, cinema, compagnie teatrali che caratterizzano l’evento stesso. Una corretta rappresentazione della conoscenza ad essi legata richiede, pertanto, una modellazione in cui i dati possano essere interconnessi, rivelando un valore informativo che altrimenti resterebbe nascosto. Il lavoro svolto ha avuto lo scopo di realizzare un dataset rispondente alle caratteristiche tipiche del Semantic Web grazie al quale è stato possibile potenziare il circuito di comunicazione e informazione turistica QRPlaces 2. Nello specifico, attraverso la conversione ontologica di dati di vario genere relativi ad eventi dislocati nel territorio, e sfruttando i principi e le tecnologie del Linked Data, si è cercato di ottenere un modello informativo quanto più possibile correlato e arricchito da dati esterni. L’obiettivo finale è stato quello di ottenere una sorgente informativa di dati interconnessi non solo tra loro ma anche con quelli presenti in sorgenti esterne, dando vita ad un percorso di collegamenti in grado di evidenziare una ricchezza informativa utilizzabile per la creazione di valore aggiunto che altrimenti non sarebbe possibile ottenere. Questo aspetto è stato realizzato attraverso un’in- terfaccia di MashUp che utilizza come sorgente il dataset creato e tutti i collegamenti con la rete del Linked Data, in grado di reperire informazioni aggiuntive multi dominio.
Resumo:
This work is concerned with the increasing relationships between two distinct multidisciplinary research fields, Semantic Web technologies and scholarly publishing, that in this context converge into one precise research topic: Semantic Publishing. In the spirit of the original aim of Semantic Publishing, i.e. the improvement of scientific communication by means of semantic technologies, this thesis proposes theories, formalisms and applications for opening up semantic publishing to an effective interaction between scholarly documents (e.g., journal articles) and their related semantic and formal descriptions. In fact, the main aim of this work is to increase the users' comprehension of documents and to allow document enrichment, discovery and linkage to document-related resources and contexts, such as other articles and raw scientific data. In order to achieve these goals, this thesis investigates and proposes solutions for three of the main issues that semantic publishing promises to address, namely: the need of tools for linking document text to a formal representation of its meaning, the lack of complete metadata schemas for describing documents according to the publishing vocabulary, and absence of effective user interfaces for easily acting on semantic publishing models and theories.
Resumo:
Many industries and academic institutions share the vision that an appropriate use of information originated from the environment may add value to services in multiple domains and may help humans in dealing with the growing information overload which often seems to jeopardize our life. It is also clear that information sharing and mutual understanding between software agents may impact complex processes where many actors (humans and machines) are involved, leading to relevant socioeconomic benefits. Starting from these two input, architectural and technological solutions to enable “environment-related cooperative digital services” are here explored. The proposed analysis starts from the consideration that our environment is physical space and here diversity is a major value. On the other side diversity is detrimental to common technological solutions, and it is an obstacle to mutual understanding. An appropriate environment abstraction and a shared information model are needed to provide the required levels of interoperability in our heterogeneous habitat. This thesis reviews several approaches to support environment related applications and intends to demonstrate that smart-space-based, ontology-driven, information-sharing platforms may become a flexible and powerful solution to support interoperable services in virtually any domain and even in cross-domain scenarios. It also shows that semantic technologies can be fruitfully applied not only to represent application domain knowledge. For example semantic modeling of Human-Computer Interaction may support interaction interoperability and transformation of interaction primitives into actions, and the thesis shows how smart-space-based platforms driven by an interaction ontology may enable natural ad flexible ways of accessing resources and services, e.g, with gestures. An ontology for computational flow execution has also been built to represent abstract computation, with the goal of exploring new ways of scheduling computation flows with smart-space-based semantic platforms.
Resumo:
The aim of the thesis is to investigate the topic of semantic under-determinacy, i.e. the failure of the semantic content of certain expressions to determine a truth-evaluable utterance content. In the first part of the thesis, I engage with the problem of setting apart semantic under-determinacy as opposed to other phenomena such as ambiguity, vagueness, indexicality. As I will argue, the feature that distinguishes semantic under-determinacy from these phenomena is its being explainable solely in terms of under-articulation. In the second part of the thesis, I discuss the topic of how communication is possible, despite the semantic under-determinacy of language. I discuss a number of answers that have been offered: (i) the Radical Contextualist explanation which emphasises the role of pragmatic processes in utterance comprehension; (ii) the Indexicalist explanation in terms of hidden syntactic positions; (iii) the Relativist account, which regards sentences as true or false relative to extra coordinates in the circumstances of evaluation (besides possible worlds). In the final chapter, I propose an account of the comprehension of utterances of semantically under-determined sentences in terms of conceptual constraints, i.e. ways of organising information which regulate thought and discourse on certain matters. Conceptual constraints help the hearer to work out the truth-conditions of an utterance of a semantically under-determined sentence. Their role is clearly semantic, in that they contribute to “what is said” (rather than to “what is implied”); however, they do not respond to any syntactic constraint. The view I propose therefore differs, on the one hand, from Radical Contextualism, because it stresses the role of semantic-governed processes as opposed to pragmatics-governed processes; on the other hand, it differs from Indexicalism in its not endorsing any commitment as to hidden syntactic positions; and it differs from Relativism in that it maintains a monadic notion if truth.
Resumo:
L’Exploratory Search, paradigma di ricerca basato sulle attività di scoperta e d’apprendimento, è stato per diverso tempo ignorato dai motori di ricerca tradizionali. Invece, è spesso dalle ricerche esplorative che nascono le idee più innovative. Le recenti tecnologie del Semantic Web forniscono le soluzioni che permettono d’implementare dei motori di ricerca capaci di accompagnare gli utenti impegnati in tale tipo di ricerca. Aemoo, motore di ricerca sul quale s’appoggia questa tesi ne è un esempio efficace. A partire da quest’ultimo e sempre con l’aiuto delle tecnologie del Web of Data, questo lavoro si propone di fornire una metodologia che permette di prendere in considerazione la singolarità del profilo di ciascun utente al fine di guidarlo nella sua ricerca esplorativa in modo personalizzato. Il criterio di personalizzazione che abbiamo scelto è comportamentale, ovvero basato sulle decisioni che l’utente prende ad ogni tappa che ritma il processo di ricerca. Implementando un prototipo, abbiamo potuto testare la validità di quest’approccio permettendo quindi all’utente di non essere più solo nel lungo e tortuoso cammino che porta alla conoscenza.
Resumo:
This thesis concerns artificially intelligent natural language processing systems that are capable of learning the properties of lexical items (properties like verbal valency or inflectional class membership) autonomously while they are fulfilling their tasks for which they have been deployed in the first place. Many of these tasks require a deep analysis of language input, which can be characterized as a mapping of utterances in a given input C to a set S of linguistically motivated structures with the help of linguistic information encoded in a grammar G and a lexicon L: G + L + C → S (1) The idea that underlies intelligent lexical acquisition systems is to modify this schematic formula in such a way that the system is able to exploit the information encoded in S to create a new, improved version of the lexicon: G + L + S → L' (2) Moreover, the thesis claims that a system can only be considered intelligent if it does not just make maximum usage of the learning opportunities in C, but if it is also able to revise falsely acquired lexical knowledge. So, one of the central elements in this work is the formulation of a couple of criteria for intelligent lexical acquisition systems subsumed under one paradigm: the Learn-Alpha design rule. The thesis describes the design and quality of a prototype for such a system, whose acquisition components have been developed from scratch and built on top of one of the state-of-the-art Head-driven Phrase Structure Grammar (HPSG) processing systems. The quality of this prototype is investigated in a series of experiments, in which the system is fed with extracts of a large English corpus. While the idea of using machine-readable language input to automatically acquire lexical knowledge is not new, we are not aware of a system that fulfills Learn-Alpha and is able to deal with large corpora. To instance four major challenges of constructing such a system, it should be mentioned that a) the high number of possible structural descriptions caused by highly underspeci ed lexical entries demands for a parser with a very effective ambiguity management system, b) the automatic construction of concise lexical entries out of a bulk of observed lexical facts requires a special technique of data alignment, c) the reliability of these entries depends on the system's decision on whether it has seen 'enough' input and d) general properties of language might render some lexical features indeterminable if the system tries to acquire them with a too high precision. The cornerstone of this dissertation is the motivation and development of a general theory of automatic lexical acquisition that is applicable to every language and independent of any particular theory of grammar or lexicon. This work is divided into five chapters. The introductory chapter first contrasts three different and mutually incompatible approaches to (artificial) lexical acquisition: cue-based queries, head-lexicalized probabilistic context free grammars and learning by unification. Then the postulation of the Learn-Alpha design rule is presented. The second chapter outlines the theory that underlies Learn-Alpha and exposes all the related notions and concepts required for a proper understanding of artificial lexical acquisition. Chapter 3 develops the prototyped acquisition method, called ANALYZE-LEARN-REDUCE, a framework which implements Learn-Alpha. The fourth chapter presents the design and results of a bootstrapping experiment conducted on this prototype: lexeme detection, learning of verbal valency, categorization into nominal count/mass classes, selection of prepositions and sentential complements, among others. The thesis concludes with a review of the conclusions and motivation for further improvements as well as proposals for future research on the automatic induction of lexical features.
Resumo:
Nel presente lavoro si introduce un nuovo indice per la valutazione dei prodotti della ricerca: l'indice di multidisciplinarieta`. Questa nuova metrica puo` essere un interessante parametro di valutazione: il panorama degli studi multidisciplinari e` vasto ed eterogeneo, ed all'interno di questo sono richieste necessarie competenze trasversali. Le attuali metriche adottate nella valutazione di un accademico, di un journal, o di una conferenza non tengono conto di queste situazioni intermedie, e limitano la loro valutazione dell'impatto al semplice conteggio delle citazioni ricevute. Il risultato di tale valutazione consiste in un valore dell'impatto della ricerca senza una connotazione della direzione e della rilevanza di questa nel contesto delle altre discipline. L'indice di multidisciplinarieta` proposto si integrerebbe allora all'interno dell'attuale panorama delle metriche di valutazione della ricerca, offrendo -accanto ad una quantificazione dell'impatto- una quantificazione della varieta` dei contesti disciplinari nei quali si inserisce.
Resumo:
The research aims at developing a framework for semantic-based digital survey of architectural heritage. Rooted in knowledge-based modeling which extracts mathematical constraints of geometry from architectural treatises, as-built information of architecture obtained from image-based modeling is integrated with the ideal model in BIM platform. The knowledge-based modeling transforms the geometry and parametric relation of architectural components from 2D printings to 3D digital models, and create large amount variations based on shape grammar in real time thanks to parametric modeling. It also provides prior knowledge for semantically segmenting unorganized survey data. The emergence of SfM (Structure from Motion) provides access to reconstruct large complex architectural scenes with high flexibility, low cost and full automation, but low reliability of metric accuracy. We solve this problem by combing photogrammetric approaches which consists of camera configuration, image enhancement, and bundle adjustment, etc. Experiments show the accuracy of image-based modeling following our workflow is comparable to that from range-based modeling. We also demonstrate positive results of our optimized approach in digital reconstruction of portico where low-texture-vault and dramatical transition of illumination bring huge difficulties in the workflow without optimization. Once the as-built model is obtained, it is integrated with the ideal model in BIM platform which allows multiple data enrichment. In spite of its promising prospect in AEC industry, BIM is developed with limited consideration of reverse-engineering from survey data. Besides representing the architectural heritage in parallel ways (ideal model and as-built model) and comparing their difference, we concern how to create as-built model in BIM software which is still an open area to be addressed. The research is supposed to be fundamental for research of architectural history, documentation and conservation of architectural heritage, and renovation of existing buildings.
Resumo:
Principale obiettivo della ricerca è quello di ricostruire lo stato dell’arte in materia di sanità elettronica e Fascicolo Sanitario Elettronico, con una precipua attenzione ai temi della protezione dei dati personali e dell’interoperabilità. A tal fine sono stati esaminati i documenti, vincolanti e non, dell’Unione europea nonché selezionati progetti europei e nazionali (come “Smart Open Services for European Patients” (EU); “Elektronische Gesundheitsakte” (Austria); “MedCom” (Danimarca); “Infrastruttura tecnologica del Fascicolo Sanitario Elettronico”, “OpenInFSE: Realizzazione di un’infrastruttura operativa a supporto dell’interoperabilità delle soluzioni territoriali di fascicolo sanitario elettronico nel contesto del sistema pubblico di connettività”, “Evoluzione e interoperabilità tecnologica del Fascicolo Sanitario Elettronico”, “IPSE - Sperimentazione di un sistema per l’interoperabilità europea e nazionale delle soluzioni di Fascicolo Sanitario Elettronico: componenti Patient Summary e ePrescription” (Italia)). Le analisi giuridiche e tecniche mostrano il bisogno urgente di definire modelli che incoraggino l’utilizzo di dati sanitari ed implementino strategie effettive per l’utilizzo con finalità secondarie di dati sanitari digitali , come Open Data e Linked Open Data. L’armonizzazione giuridica e tecnologica è vista come aspetto strategico per ridurre i conflitti in materia di protezione di dati personali esistenti nei Paesi membri nonché la mancanza di interoperabilità tra i sistemi informativi europei sui Fascicoli Sanitari Elettronici. A questo scopo sono state individuate tre linee guida: (1) armonizzazione normativa, (2) armonizzazione delle regole, (3) armonizzazione del design dei sistemi informativi. I principi della Privacy by Design (“prottivi” e “win-win”), così come gli standard del Semantic Web, sono considerate chiavi risolutive per il suddetto cambiamento.
Resumo:
La ricerca nel campo del cultural heritage management ha adottato negli ultimi decenni le tecnologie web quali strumenti privilegiati per stabilire i nuovi approcci e indirizzi nella valorizzazione della conoscenza. Questa tesi si colloca nell'ambito interdisciplinare tra le scienze umanistiche e informatiche e si fonda sulla consapevolezza del reciproco arricchimento che può derivare dal continuo confronto, le une disponendo di mezzi più espressivi e popolari per divulgare il proprio patrimonio e le altre usufruendo di “materia prima” autorevole (ossia dati strutturati di qualità e alto livello di fiducia) in fase di sperimentazione. Lo studio dei punti di tangenza tra le discipline muove da due ambiti precisi, ovvero le applicazioni informatiche nel campo dell'archivistica e gli sviluppi del semantic web nel settore delle digital humanities.
Resumo:
Il presente lavoro si occupa di fare una rassegna esaustiva di alcuni Linked Open Dataset nel contesto delle pubblicazioni scientifiche, cercando di inquadrare la loro eterogeneità ed identificando i principali pregi e difetti di ciascuno. Inoltre, descriviamo il nostro prototipo GReAT (Giorgi's Redundant Authors Tool), creato per il corretto riconoscimento e disambiguazione degli autori.
Resumo:
Information is nowadays a key resource: machine learning and data mining techniques have been developed to extract high-level information from great amounts of data. As most data comes in form of unstructured text in natural languages, research on text mining is currently very active and dealing with practical problems. Among these, text categorization deals with the automatic organization of large quantities of documents in priorly defined taxonomies of topic categories, possibly arranged in large hierarchies. In commonly proposed machine learning approaches, classifiers are automatically trained from pre-labeled documents: they can perform very accurate classification, but often require a consistent training set and notable computational effort. Methods for cross-domain text categorization have been proposed, allowing to leverage a set of labeled documents of one domain to classify those of another one. Most methods use advanced statistical techniques, usually involving tuning of parameters. A first contribution presented here is a method based on nearest centroid classification, where profiles of categories are generated from the known domain and then iteratively adapted to the unknown one. Despite being conceptually simple and having easily tuned parameters, this method achieves state-of-the-art accuracy in most benchmark datasets with fast running times. A second, deeper contribution involves the design of a domain-independent model to distinguish the degree and type of relatedness between arbitrary documents and topics, inferred from the different types of semantic relationships between respective representative words, identified by specific search algorithms. The application of this model is tested on both flat and hierarchical text categorization, where it potentially allows the efficient addition of new categories during classification. Results show that classification accuracy still requires improvements, but models generated from one domain are shown to be effectively able to be reused in a different one.
Resumo:
Questa ricerca è un’indagine semasiologica del lessico agostiniano della provvidenza divina, costituito dalle parole-chiave prouidentia, prouideo, prouidens, prouidus, prouisio, prouisor, prouisus, e dai lessemi in relazione logico-sintattica diretta con esse. La prospettiva è sia sincronica (si considerano tutte le attestazioni delle parole-chiave presenti nel corpus agostiniano), sia diacronica: si soppesano di volta in volta analogie e differenze agostiniane rispetto agli antecedenti, nell’intento di arricchire il panorama dei possibili modelli lessicali latini (pagani, biblici, patristici) di Agostino. I dati lessicali sono stati raccolti in una banca dati appositamente costituita, selezionati secondo i criteri di frequenza e pregnanza semantica, e analizzati per nuclei tematici, coincidenti in parte con i capitoli della tesi. Si studiano dapprima i lessemi che esprimono il governo della provvidenza (le famiglie lessicali di administro, guberno e rego, e altri lessemi che designano l’azione della provvidenza); sono poi analizzati lessemi e iuncturae in cui prevale l’idea del mistero della provvidenza. Gli ultimi due capitoli sono dedicati al tema della cura divina, e a quello della cosiddetta “pedagogia divina”: attraverso i segni esteriori, la provvidenza ‘richiama’ l’uomo a rientrare in se stesso. Un’appendice approfondisce infine l’uso agostiniano di Sap 6,16 e Sap 8,1. L’apporto di Agostino al lessico filosofico latino va individuato a livello semantico più che nell’innovazione lessicale. Accanto a suffissazione, composizione, calco, la metafora svolge un ruolo essenziale nella formazione del lessico dell’Ipponate, e proviene spesso da altre lingue tecniche oppure è radicata nel patrimonio di immagini tradizionali della religione pagana. Il debito di Agostino è indubbiamente verso Cicerone, ma anche verso Seneca, per l’uso in ambito esistenziale-biografico di alcuni lessemi. Agostino li trasferisce però dal piano umano a quello divino, come nel caso del concetto di admonitio: parte integrante del programma filosofico senecano; ‘richiamo’ della provvidenza per Agostino, concetto che risente anche dell’apporto di retorica ed esegesi.
Resumo:
The Default Mode Network (DMN) is a higher order functional neural network that displays activation during passive rest and deactivation during many types of cognitive tasks. Accordingly, the DMN is viewed to represent the neural correlate of internally-generated self-referential cognition. This hypothesis implies that the DMN requires the involvement of cognitive processes, like declarative memory. The present study thus examines the spatial and functional convergence of the DMN and the semantic memory system. Using an active block-design functional Magnetic Resonance Imaging (fMRI) paradigm and Independent Component Analysis (ICA), we trace the DMN and fMRI signal changes evoked by semantic, phonological and perceptual decision tasks upon visually-presented words. Our findings show less deactivation during semantic compared to the two non-semantic tasks for the entire DMN unit and within left-hemispheric DMN regions, i.e., the dorsal medial prefrontal cortex, the anterior cingulate cortex, the retrosplenial cortex, the angular gyrus, the middle temporal gyrus and the anterior temporal region, as well as the right cerebellum. These results demonstrate that well-known semantic regions are spatially and functionally involved in the DMN. The present study further supports the hypothesis of the DMN as an internal mentation system that involves declarative memory functions.