884 resultados para learning by projects


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although the debate of what data science is has a long history and has not reached a complete consensus yet, Data Science can be summarized as the process of learning from data. Guided by the above vision, this thesis presents two independent data science projects developed in the scope of multidisciplinary applied research. The first part analyzes fluorescence microscopy images typically produced in life science experiments, where the objective is to count how many marked neuronal cells are present in each image. Aiming to automate the task for supporting research in the area, we propose a neural network architecture tuned specifically for this use case, cell ResUnet (c-ResUnet), and discuss the impact of alternative training strategies in overcoming particular challenges of our data. The approach provides good results in terms of both detection and counting, showing performance comparable to the interpretation of human operators. As a meaningful addition, we release the pre-trained model and the Fluorescent Neuronal Cells dataset collecting pixel-level annotations of where neuronal cells are located. In this way, we hope to help future research in the area and foster innovative methodologies for tackling similar problems. The second part deals with the problem of distributed data management in the context of LHC experiments, with a focus on supporting ATLAS operations concerning data transfer failures. In particular, we analyze error messages produced by failed transfers and propose a Machine Learning pipeline that leverages the word2vec language model and K-means clustering. This provides groups of similar errors that are presented to human operators as suggestions of potential issues to investigate. The approach is demonstrated on one full day of data, showing promising ability in understanding the message content and providing meaningful groupings, in line with previously reported incidents by human operators.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the framework of industrial problems, the application of Constrained Optimization is known to have overall very good modeling capability and performance and stands as one of the most powerful, explored, and exploited tool to address prescriptive tasks. The number of applications is huge, ranging from logistics to transportation, packing, production, telecommunication, scheduling, and much more. The main reason behind this success is to be found in the remarkable effort put in the last decades by the OR community to develop realistic models and devise exact or approximate methods to solve the largest variety of constrained or combinatorial optimization problems, together with the spread of computational power and easily accessible OR software and resources. On the other hand, the technological advancements lead to a data wealth never seen before and increasingly push towards methods able to extract useful knowledge from them; among the data-driven methods, Machine Learning techniques appear to be one of the most promising, thanks to its successes in domains like Image Recognition, Natural Language Processes and playing games, but also the amount of research involved. The purpose of the present research is to study how Machine Learning and Constrained Optimization can be used together to achieve systems able to leverage the strengths of both methods: this would open the way to exploiting decades of research on resolution techniques for COPs and constructing models able to adapt and learn from available data. In the first part of this work, we survey the existing techniques and classify them according to the type, method, or scope of the integration; subsequently, we introduce a novel and general algorithm devised to inject knowledge into learning models through constraints, Moving Target. In the last part of the thesis, two applications stemming from real-world projects and done in collaboration with Optit will be presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist 'Eve' designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To determine the mean critical fusion frequency and the short-term fluctuation, to analyze the influence of age, gender, and the learning effect in healthy subjects undergoing flicker perimetry. METHODS: Study 1 - 95 healthy subjects underwent flicker perimetry once in one eye. Mean critical fusion frequency values were compared between genders, and the influence of age was evaluated using linear regression analysis. Study 2 - 20 healthy subjects underwent flicker perimetry 5 times in one eye. The first 3 sessions were separated by an interval of 1 to 30 days, whereas the last 3 sessions were performed within the same day. The first 3 sessions were used to investigate the presence of a learning effect, whereas the last 3 tests were used to calculate short-term fluctuation. RESULTS: Study 1 - Linear regression analysis demonstrated that mean global, foveal, central, and critical fusion frequency per quadrant significantly decreased with age (p<0.05).There were no statistically significant differences in mean critical fusion frequency values between males and females (p>0.05), with the exception of the central area and inferonasal quadrant (p=0.049 and p=0.011, respectively), where the values were lower in females. Study 2 - Mean global (p=0.014), central (p=0.008), and peripheral (p=0.03) critical fusion frequency were significantly lower in the first session compared to the second and third sessions. The mean global short-term fluctuation was 5.06±1.13 Hz, the mean interindividual and intraindividual variabilities were 11.2±2.8% and 6.4±1.5%, respectively. CONCLUSION: This study suggests that, in healthy subjects, critical fusion frequency decreases with age, that flicker perimetry is associated with a learning effect, and that a moderately high short-term fluctuation is expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical and operant conditioning principles, such as the behavioral discrepancy-derived assumption that reinforcement always selects antecedent stimulus and response relations, have been studied at the neural level, mainly by observing the strengthening of neuronal responses or synaptic connections. A review of the literature on the neural basis of behavior provided extensive scientific data that indicate a synthesis between the two conditioning processes based mainly on stimulus control in learning tasks. The resulting analysis revealed the following aspects. Dopamine acts as a behavioral discrepancy signal in the midbrain pathway of positive reinforcement, leading toward the nucleus accumbens. Dopamine modulates both types of conditioning in the Aplysia mollusk and in mammals. In vivo and in vitro mollusk preparations show convergence of both types of conditioning in the same motor neuron. Frontal cortical neurons are involved in behavioral discrimination in reversal and extinction procedures, and these neurons preferentially deliver glutamate through conditioned stimulus or discriminative stimulus pathways. Discriminative neural responses can reliably precede operant movements and can also be common to stimuli that share complex symbolic relations. The present article discusses convergent and divergent points between conditioning paradigms at the neural level of analysis to advance our knowledge on reinforcement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O Grupo Poéticas Digitais foi criado em 2002, no Departamento de Artes Plásticas da ECA-USP, com a intenção de gerar um núcleo multidisciplinar, promovendo o desenvolvimento de projetos experimentais e a reflexão sobre o impacto das novas tecnologias no campo das artes. O Grupo é um desdobramento do projeto wAwRwT, iniciado em 1995 por Gilbertto Prado e tem como participantes professores, artistas, pesquisadores e estudantes. O objetivo deste texto é apresentar algumas experimentações recentes de projetos poéticos como Desluz, de 2009/2010, e Amoreiras, de 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. The ToLigado Project - Your School Interactive Newspaper is an interactive virtual learning environment conceived, developed, implemented and supported by researchers at the School of the Future Research Laboratory of the University of Sao Paulo, Brazil. Method. This virtual learning environment aims to motivate trans-disciplinary research among public school students and teachers in 2,931 schools equipped with Internet-access computer rooms. Within this virtual community, students produce collective multimedia research documents that are immediately published in the portal. The project also aims to increase students' autonomy for research, collaborative work and Web authorship. Main sections of the portal are presented and described. Results. Partial results of the first two years' implementation are presented and indicate a strong motivation among students to produce knowledge despite the fragile hardware and software infrastructure at the time. Discussion. In this new environment, students should be seen as 'knowledge architects' and teachers as facilitators, or 'curiosity managers'. The ToLigado portal may constitute a repository for future studies regarding student attitudes in virtual learning environments, students' behaviour as 'authors', Web authorship involving collective knowledge production, teachers' behaviour as facilitators, and virtual learning environments as digital repositories of students' knowledge construction and social capital in virtual learning communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a local production system (LPS), besides external economies, the interaction, cooperation, and learning are indicated by the literature as complementary ways of enhancing the LPS's competitiveness and gains. In Brazil, the greater part of LPSs, mostly composed by small enterprises, displays incipient relationships and low levels of interaction and cooperation among their actors. The size of the participating enterprises itself for specificities that engender organizational constraints, which, in turn, can have a considerable impact on their relationships and learning dynamics. For that reason, it is the purpose of this article to present an analysis of interaction, cooperation, and learning relationships among several types of actors pertaining to an LPS in the farming equipment and machinery sector, bearing in mind the specificities of small enterprises. To this end, the fieldwork carried out in this study aimed at: (i) investigating external and internal knowledge sources conducive to learning and (ii) identifying and analyzing motivating and inhibiting factors related to specificities of small enterprises in order to bring the LPS members closer together and increase their cooperation and interaction. Empirical evidence shows that internal aspects of the enterprises, related to management and infrastructure, can have a strong bearing on their joint actions, interaction and learning processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Souza MA, Souza MH, Palheta RC Jr, Cruz PR, Medeiros BA, Rola FH, Magalhaes PJ, Troncon LE, Santos AA. Evaluation of gastrointestinal motility in awake rats: a learning exercise for undergraduate biomedical students. Adv Physiol Educ 33: 343-348, 2009; doi: 10.1152/advan.90176.2008.-Current medical curricula devote scarce time for practical activities on digestive physiology, despite frequent misconceptions about dyspepsia and dysmotility phenomena. Thus, we designed a hands-on activity followed by a small-group discussion on gut motility. Male awake rats were randomly submitted to insulin, control, or hypertonic protocols. Insulin and control rats were gavage fed with 5% glucose solution, whereas hypertonic-fed rats were gavage fed with 50% glucose solution. Insulin treatment was performed 30 min before a meal. All meals (1.5 ml) contained an equal mass of phenol red dye. After 10, 15, or 20 min of meal gavage, rats were euthanized. Each subset consisted of six to eight rats. Dye recovery in the stomach and proximal, middle, and distal small intestine was measured by spectrophotometry, a safe and reliable method that can be performed by minimally trained students. In a separate group of rats, we used the same protocols except that the test meal contained (99m)Tc as a marker. Compared with control, the hypertonic meal delayed gastric emptying and gastrointestinal transit, whereas insulinic hypoglycemia accelerated them. The session helped engage our undergraduate students in observing and analyzing gut motor behavior. In conclusion, the fractional dye retention test can be used as a teaching tool to strengthen the understanding of basic physiopathological features of gastrointestinal motility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this investigation was to evaluate three learning methods for teaching basic oral surgical skills Thirty predoctoral dental students without any surgical knowledge or previous surgical experience were divided Into three groups (n=10 each) according to instructional strategy Group 1, active learning Group 2, text reading only, and Group 3, text reading and video demonstration After instruction, the apprentices were allowed to practice incision dissection and suture maneuvers in a bench learning model During the students' performance, a structured practice evaluation test to account for correct or incorrect maneuvers was applied by trained observers Evaluation tests were repeated after thirty and sixty days Data from resulting scores between groups and periods were considered for statistical analysis (ANOVA and Tukey Kramer) with a significant level of a=0 05 Results showed that the active learning group presented the significantly best learning outcomes related to immediate assimilation of surgical procedures compared to other groups All groups results were similar after sixty days of the first practice Assessment tests were fundamental to evaluate teaching strategies and allowed theoretical and proficiency learning feedbacks Repetition and interactive practice promoted retention of knowledge on basic oral surgical skills

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lellis-Santos C, Giannocco G, Nunes MT. The case of thyroid hormones: how to learn physiology by solving a detective case. Adv Physiol Educ 35: 219-226, 2011; doi:10.1152/advan.00135.2010.Thyroid diseases are prevalent among endocrine disorders, and careful evaluation of patients' symptoms is a very important part in their diagnosis. Developing new pedagogical strategies, such as problem-based learning (PBL), is extremely important to stimulate and encourage medical and biomedical students to learn thyroid physiology and identify the signs and symptoms of thyroid dysfunction. The present study aimed to create a new pedagogical approach to build deep knowledge about hypo-/hyperthyroidism by proposing a hands-on activity based on a detective case, using alternative materials in place of laboratory animals. After receiving a description of a criminal story involving changes in thyroid hormone economy, students collected data from clues, such as body weight, mesenteric vascularization, visceral fat, heart and thyroid size, heart rate, and thyroid-stimulating hormone serum concentration to solve the case. Nevertheless, there was one missing clue for each panel of data. Four different materials were proposed to perform the same practical lesson. Animals, pictures, small stuffed toy rats, and illustrations were all effective to promote learning, and the detective case context was considered by students as inviting and stimulating. The activity can be easily performed independently of the institution's purchasing power. The practical lesson stimulated the scientific method of data collection and organization, discussion, and review of thyroid hormone actions to solve the case. Hence, this activity provides a new strategy and alternative materials to teach without animal euthanization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adaptive process in motor learning was examined in terms of effects of varying amounts of constant practice performed before random practice. Participants pressed five response keys sequentially, the last one coincident with the lighting of a final visual stimulus provided by a complex coincident timing apparatus. Different visual stimulus speeds were used during the random practice. 33 children (M age=11.6 yr.) were randomly assigned to one of three experimental groups: constant-random, constant-random 33%, and constant-random 66%. The constant-random group practiced constantly until they reached a criterion of performance stabilization three consecutive trials within 50 msec. of error. The other two groups had additional constant practice of 33 and 66%, respectively, of the number of trials needed to achieve the stabilization criterion. All three groups performed 36 trials under random practice; in the adaptation phase, they practiced at a different visual stimulus speed adopted in the stabilization phase. Global performance measures were absolute, constant, and variable errors, and movement pattern was analyzed by relative timing and overall movement time. There was no group difference in relation to global performance measures and overall movement time. However, differences between the groups were observed on movement pattern, since constant-random 66% group changed its relative timing performance in the adaptation phase.