804 resultados para investment criteria


Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than thirty years ago, Amari and colleagues proposed a statistical framework for identifying structurally stable macrostates of neural networks from observations of their microstates. We compare their stochastic stability criterion with a deterministic stability criterion based on the ergodic theory of dynamical systems, recently proposed for the scheme of contextual emergence and applied to particular inter-level relations in neuroscience. Stochastic and deterministic stability criteria for macrostates rely on macro-level contexts, which make them sensitive to differences between different macro-levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main activity carried out by the geophysicist when interpreting seismic data, in terms of both importance and time spent is tracking (or picking) seismic events. in practice, this activity turns out to be rather challenging, particularly when the targeted event is interrupted by discontinuities such as geological faults or exhibits lateral changes in seismic character. In recent years, several automated schemes, known as auto-trackers, have been developed to assist the interpreter in this tedious and time-consuming task. The automatic tracking tool available in modem interpretation software packages often employs artificial neural networks (ANN's) to identify seismic picks belonging to target events through a pattern recognition process. The ability of ANNs to track horizons across discontinuities largely depends on how reliably data patterns characterise these horizons. While seismic attributes are commonly used to characterise amplitude peaks forming a seismic horizon, some researchers in the field claim that inherent seismic information is lost in the attribute extraction process and advocate instead the use of raw data (amplitude samples). This paper investigates the performance of ANNs using either characterisation methods, and demonstrates how the complementarity of both seismic attributes and raw data can be exploited in conjunction with other geological information in a fuzzy inference system (FIS) to achieve an enhanced auto-tracking performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental principle in practical nonlinear data modeling is the parsimonious principle of constructing the minimal model that explains the training data well. Leave-one-out (LOO) cross validation is often used to estimate generalization errors by choosing amongst different network architectures (M. Stone, "Cross validatory choice and assessment of statistical predictions", J. R. Stast. Soc., Ser. B, 36, pp. 117-147, 1974). Based upon the minimization of LOO criteria of either the mean squares of LOO errors or the LOO misclassification rate respectively, we present two backward elimination algorithms as model post-processing procedures for regression and classification problems. The proposed backward elimination procedures exploit an orthogonalization procedure to enable the orthogonality between the subspace as spanned by the pruned model and the deleted regressor. Subsequently, it is shown that the LOO criteria used in both algorithms can be calculated via some analytic recursive formula, as derived in this contribution, without actually splitting the estimation data set so as to reduce computational expense. Compared to most other model construction methods, the proposed algorithms are advantageous in several aspects; (i) There are no tuning parameters to be optimized through an extra validation data set; (ii) The procedure is fully automatic without an additional stopping criteria; and (iii) The model structure selection is directly based on model generalization performance. The illustrative examples on regression and classification are used to demonstrate that the proposed algorithms are viable post-processing methods to prune a model to gain extra sparsity and improved generalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of Stochastic Diffusion Search (SDS), a novel and efficient optimisation and search algorithm, is presented, resulting in a derivation of the minimum acceptable match resulting in a stable convergence within a noisy search space. The applicability of SDS can therefore be assessed for a given problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Momentum strategies have the potential to generate extra profits in private real estate markets. Tests of a variety of frequencies of portfolio reweighting identify periods of winner and loser performance. There are strong potential gains from momentum strategies that are based on prior returns over a 6- to 12-month period. Whether these gains are attainable for real-world investors depends on transaction costs, but some momentum strategies do produce net excess returns. The findings hold even if returns are unsmoothed to reflect underlying market prices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global financial activity is heavily concentrated in a small number of world cities –international financial centers. The office markets in those cities receive significant flows of investment capital. The growing specialization of activity in IFCs and innovations in real estate investment vehicles lock developer, occupier, investment, and finance markets together, creating common patterns of movement and transmitting shocks from one office market throughout the system. International real estate investment strategies that fail to recognize this common source of volatility and risk may fail to deliver the diversification benefits sought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores principal‐agent issues in the stock selection processes of institutional property investors. Drawing upon an interview survey of fund managers and acquisition professionals, it focuses on the relationships between principals and external agents as they engage in property transactions. The research investigated the extent to which the presence of outcome‐based remuneration structures could lead to biased advice, overbidding and/or poor asset selection. It is concluded that institutional property buyers are aware of incentives for opportunistic behaviour by external agents, often have sufficient expertise to robustly evaluate agents’ advice and that these incentives are counter‐balanced by a number of important controls on potential opportunistic behaviour. There are strong counter‐incentives in the need for the agents to establish personal relationships and trust between themselves and institutional buyers, to generate repeat and related business and to preserve or generate a good reputation in the market.

Relevância:

20.00% 20.00%

Publicador: