974 resultados para interleukin 15 adoptive T cell transfer, immunotherapy
Resumo:
Esse documento trata de: as a????es de Saneamento no ??mbito do PAC; as a????es do PAC Saneamento no ??mbito do Or??amento da Uni??o; Agentes Envolvidos; Planejamento, normatiza????o e operacionaliza????o das a????es do OGU/PAC no Minist??rio das Cidades; Procedimentos gerais de acesso aos programas e a????es do Minist??rio das Cidades; ??rg??os do Minist??rio das Cidades envolvidos nos processos de transfer??ncias de recursos de Saneamento B??sico; ??rg??os de supervis??o, acompanhamento e monitoramento do PAC; Institui????o Operacionalizadora dos Programas e A????es do MCID; Proponente/Compromiss??rio; Interveniente Executor; Executor ou Fornecedor; Benefici??rios finais; ??rg??os de controle interno e externo; Agentes Envolvidos; Regras de sele????o de propostas no ??mbito do OGU/PAC no MCID; Regras T??cnicas dos Programas e A????es/Modalidades do MCID; Procedimentos de Contrata????o e Execu????o; Fase Preparat??ria (Sele????o); Fase da Contrata????o; Fase da Execu????o; Presta????o de Contas e Tomada de Contas Especial (TCE)
Resumo:
Understanding the impact of training sessions on the immune response is crucial for the adequate periodization of training, to prevent both a negative influence on health and a performance impairment of the athlete. This study evaluated acute systemic immune cell changes in response to an actual swimming session, during a 24-h recovery period, controlling for sex, menstrual cycle phases, maturity, and age group. Competitive swimmers (30 females, 15 ± 1.3 years old; and 35 males, 16.5 ± 2.1 years old) performed a high-intensity training session. Blood samples were collected before, immediately after, 2 h after, and 24 h after exercise. Standard procedures for the assessment of leukogram by automated counting (Coulter LH 750, Beckman) and lymphocytes subsets by flow cytometry (FACS Calibur BD, Biosciences) were used. Subjects were grouped according to competitive age groups and pubertal Tanner stages. Menstrual cycle phase was monitored. The training session induced neutrophilia, lymphopenia, and a low eosinophil count, lasting for at least 2 h, independent of sex and maturity. At 24 h postexercise, the acquired immunity of juniors (15-17 years old), expressed by total lymphocytes and total T lymphocytes (CD3+), was not fully recovered. This should be accounted for when planning a weekly training program. The observed lymphopenia suggests a lower immune surveillance at the end of the session that may depress the immunity of athletes, highlighting the need for extra care when athletes are exposed to aggressive environmental agents such as swimming pools
Resumo:
Two distinct subsets of γδ T cells that produce interleukin 17 (IL-17) (CD27(-) γδ T cells) or interferon-γ (IFN-γ) (CD27(+) γδ T cells) develop in the mouse thymus, but the molecular determinants of their functional potential in the periphery remain unknown. Here we conducted a genome-wide characterization of the methylation patterns of histone H3, along with analysis of mRNA encoding transcription factors, to identify the regulatory networks of peripheral IFN-γ-producing or IL-17-producing γδ T cell subsets in vivo. We found that CD27(+) γδ T cells were committed to the expression of Ifng but not Il17, whereas CD27(-) γδ T cells displayed permissive chromatin configurations at loci encoding both cytokines and their regulatory transcription factors and differentiated into cells that produced both IL-17 and IFN-γ in a tumor microenvironment.
Resumo:
High risk of recurrence/progression bladder tumours is treated with Bacillus Calmette-Guérin (BCG) immunotherapy after complete resection of the tumour. Approximately 75% of these tumours express the uncommon carbohydrate antigen sialyl-Tn (Tn), a surrogate biomarker of tumour aggressiveness. Such changes in the glycosylation of cell-surface proteins influence tumour microenvironment and immune responses that may modulate treatment outcome and the course of disease. The aim of this work is to determine the efficiency of BCG immunotherapy against tumours expressing sTn and sTn-related antigen sialyl-6-T (s6T). METHODS: In a retrospective design, 94 tumours from patients treated with BCG were screened for sTn and s6T expression. In vitro studies were conducted to determine the interaction of BCG with high-grade bladder cancer cell line overexpressing sTn. RESULTS: From the 94 cases evaluated, 36 had recurrence after BCG treatment (38.3%). Treatment outcome was influenced by age over 65 years (HR=2.668; (1.344-5.254); P=0.005), maintenance schedule (HR=0.480; (0.246-0.936); P=0.031) and multifocality (HR=2.065; (1.033-4.126); P=0.040). sTn or s6T expression was associated with BCG response (P=0.024; P<0.0001) and with increased recurrence-free survival (P=0.001). Multivariate analyses showed that sTn and/or s6T were independent predictive markers of recurrence after BCG immunotherapy (HR=0.296; (0.148-0.594); P=0.001). In vitro studies demonstrated higher adhesion and internalisation of the bacillus to cells expressing sTn, promoting cell death. CONCLUSION: s6T is described for the first time in bladder tumours. Our data strongly suggest that BCG immunotherapy is efficient against sTn- and s6T-positive tumours. Furthermore, sTn and s6T expression are independent predictive markers of BCG treatment response and may be useful in the identification of patients who could benefit more from this immunotherapy.
Resumo:
OBJECTIVE: Bacillus Calmette-Guérin (BCG) immunotherapy is the gold standard treatment for superficial bladder tumors with intermediate/high risk of recurrence or progression. However, approximately 30% of patients fail to respond to the treatment. Effective BCG therapy needs precise activation of the type 1 helper cells immune pathway. Tumor-associated macrophages (TAMs) often assume an immunoregulatory M2 phenotype and may directly interfere with the BCG-induced antitumor immune response. Thus, we aim to clarify the influence of TAMs, in particular of the M2 phenotype in stroma and tumor areas, in BCG treatment outcome. PATIENTS AND METHODS: The study included 99 patients with bladder cancer treated with BCG. Tumors resected before treatment were evaluated using immunohistochemistry for CD68 and CD163 antigens, which identify a lineage macrophage marker and a M2-polarized specific cell surface receptor, respectively. CD68+ and CD163+ macrophages were evaluated within the stroma and tumor areas, and high density of infiltrating cells spots were selected for counting. Hypoxia, an event known to modulate macrophage phenotype, was also assessed through hypoxia induced factor (HIF)-1α expression. RESULTS: Patients in whom BCG failed had high stroma-predominant CD163+ macrophage counts (high stroma but low tumor CD163+ macrophages counts) when compared with the ones with a successful treatment (71% vs. 47%, P = 0.017). Furthermore, patients presenting this phenotype showed decreased recurrence-free survival (log rank, P = 0.008) and a clear 2-fold increased risk of BCG treatment failure was observed in univariate analysis (hazard ratio = 2.343; 95% CI: 1.197-4.587; P = 0.013). Even when adjusted for potential confounders, such as age and therapeutic scheme, multivariate analysis revealed 2.6-fold increased risk of recurrence (hazard ratio = 2.627; 95% CI: 1.340-5.150; P = 0.005). High stroma-predominant CD163+ macrophage counts were also associated with low expression of HIF-1α in tumor areas, whereas high counts of CD163+ in the tumor presented high expression of HIF-1α in tumor nests. CONCLUSIONS: TAMs evaluation using CD163 is a good indicator of BCG treatment failure. Moreover, elevated infiltration of CD163+ macrophages, predominantly in stroma areas but not in the tumor, may be a useful indicator of BCG treatment outcome, possibly owing to its immunosuppressive phenotype.
Resumo:
Dissertação apresentada para obtenção do grau de Doutor em Bioquímica, especialidade Bioquímica-Física, pela Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa
Resumo:
The treatment of relapsing chronic infections (RCI) encounters many difficulties. In the present study, the use of the immuno adjuvant P40 either alone or in association with vaccinotherapy for the treatment of RCI turned out to be very effective, whereas vaccinotherapy alone was not. It is hypothesized that cell-mediated immunity may play a major role in controlling RCI, since the clinical improvement of the patients kept up with the positivation of previously negative skin tests carried out with either the specific infecting agent or with recall-anti gens.
Resumo:
A new family of "RuCp" (Cp=eta(5)-C5H5) derivatives with bidentate N,O and N,N'-heteroaromatic ligands revealed outstanding cytotoxic properties against several human cell lines namely, A2780, A2780CisR, HT29, MCF7, MDAMB231, and PD. IC50 values were much lower than those found for cisplatin. Crystal structure of compound 4 was determined by X-ray diffraction studies. Density functional theory (DFT) calculations performed for compound 1 showed electronic flow from the ruthenium center to the coordinated bidentate ligand, in agreement with the electrochemical studies and the existence of a metal-to-ligand charge-transfer (MLCT) band evidenced by spectroscopic data.
Resumo:
Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5°C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.
Resumo:
A novel two-component enzyme system from Escherichia coli involving a flavorubredoxin (FlRd) and its reductase was studied in terms of spectroscopic, redox, and biochemical properties of its constituents. FlRd contains one FMN and one rubredoxin (Rd) center per monomer. To assess the role of the Rd domain, FlRd and a truncated form lacking the Rd domain (FlRd¢Rd), were characterized. FlRd contains 2.9 ( 0.5 iron atoms/subunit, whereas FlRd¢Rd contains 2.1 ( 0.6 iron atoms/subunit. While for FlRd one iron atom corresponds to the Rd center, the other two irons, also present in FlRd¢Rd, are most probably due to a di-iron site. Redox titrations of FlRd using EPR and visible spectroscopies allowed us to determine that the Rd site has a reduction potential of -140 ( 15 mV, whereas the FMN undergoes reduction via a red-semiquinone, at -140 ( 15 mV (Flox/Flsq) and -180 ( 15 mV (Flsq/Flred), at pH 7.6. The Rd site has the lowest potential ever reported for a Rd center, which may be correlated with specific amino acid substitutions close to both cysteine clusters. The gene adjacent to that encoding FlRd was found to code for an FAD-containing protein, (flavo)rubredoxin reductase (FlRd-reductase), which is capable of mediating electron transfer from NADH to DesulfoVibrio gigas Rd as well as to E. coli FlRd. Furthermore, electron donation was found to proceed through the Rd domain of FlRd as the Rd-truncated protein does not react with FlRd-reductase. In vitro, this pathway links NADH oxidation with dioxygen reduction. The possible function of this chain is discussed considering the presence of FlRd homologues in all known genomes of anaerobes and facultative aerobes.
Resumo:
RESUMO A Esclerose Múltipla (EM) é uma doença desmielinizante crónica do Sistema Nervoso Central (SNC), provocada, em grande parte, por um ataque imuno-mediado contra diversos elementos da bainha de mielina. Dentro dos alvos antigénicos desta resposta autoimune, vários componentes proteicos e lipídicos da mielina têm vindo a ser identificados ao longo dos anos, entre os quais se destacam a proteína básica de mielina(MBP), glicoproteína ligodendrocitária da mielina (MOG), proteína proteolipídica (PLP) e glicoproteína associada à mielina (MAG). Com o desenvolvimento do modelo animal de Encefalomielite Autoimune Experimental (EAE), diversas terapias antigénio-específicas foram desenhadas, baseadas na modificação benéfica da resposta autoimune contra a mielina, tais como a administração de mielina ou seus componentes, os copolímeros terapêuticos, os ligandos peptídeos alterados e, recentemente, a vacinação com ácido desoxirribonucleico (ADN) codificador de proteínas de mielina, integrado em plasmídeos e purificado para administração parentérica. Neste trabalho, apresentamos os resultados de um extenso conjunto de experiências, subordinadas a dois temas fundamentais: 1) avaliação do potencial terapêutico, e dos mecanismos de acção, da vacinação tolerizadora com ADN codificador de proteínas de mielina (MBP, MOG, PLP, MAG) na EAE, e da associação desta vacinação com a administração de ADN de citocinas Th2, ou de oligonucleótidos imunomoduladores; 2) identificação e caracterização da resposta imune contra um novo componente da mielina com potencial antigénico, a proteína inibidora do recrescimento axonal, Nogo-A. No que respeita à vacinação com ADN, os nossos resultados comprovam a eficácia desta terapêutica antigénio-específica na prevenção e tratamento da EAE. Os seus mecanismos de acção incluem, entre outros, a supressão anérgica da proliferação antigénioespecífica dos linfócitos T anti-mielina (no modo de prevenção da doença), o enviesamento Th2 da resposta imune (quando co-administrada com a vacina de ADN codificadora da citocina IL-4, funcionando como terapia génica local), e a redução da diversificação de epítopos da resposta humoral anti-mielina, avaliada através de myelin spotted arrays. A associação das vacinas de ADN com oligonucleótidos imunomoduladores GpG, desenvolvidos para contrariar as sequências CpG imunoestimuladoras presentes no vector de vacinação, levou à melhoria da sua eficácia terapêutica, devida, provavelmente, ao efeito estimulador preferencial dos oligonucleótidos GpG sobre linfócitos Th2 e sobre células reguladoras NK-T. Com base nestes resultados a vacinação com ADN foi desenvolvida para o tratamento da EM em humanos, com ensaios clínicos a decorrerem neste momento. Em relação à proteína Nogo-A, estudos de estrutura primária e de previsão de antigenicidade identificaram a região Nogo-66 como alvo antigénico potencial para a EAE. Nas estirpes de ratinho SJL/J e C57BL/6, fomos capazes de induzir sinais clínicos e histológicos de EAE após imunização com os epítopos encefalitogénicos Nogo1-22, Nogo23- 44 e Nogo45-66, utilizando protocolos de quebra de tolerância imune. Ao mesmo tempo, identificámos e caracterizámos uma resposta linfocitária T específica contra os antigénios contidos na região Nogo-66, e uma resposta linfocitária B com diversificação intra e intermolecular a vários determinantes presentes noutras proteínas da mielina. A transferência adoptiva de linhas celulares Th2 anti-Nogo45-66, levou à melhoria clínica e histológica da EAE em animais recipientes induzidos com outros antigénios de mielina, após migração destas células para o SNC. Estes dados comprovam a importância da Nogo-66 como antigénio na EAE, e a eficácia de terapias antigénio-específicas nela baseadas. No seu conjunto, os nossos resultados confirmam o potencial terapêutico das vacinas de ADN codificadoras de proteínas de mielina, bem como a importância dos encefalitogénios contidos na proteína Nogo-A para a fisiopatologia da EAE e da EM, com eventual relevância para o desenvolvimento de novas terapias antigénio-específicas. O aperfeiçoamento futuro destas terapias poderá levar, eventualmente, a uma capacidade de manipulação da resposta imune que permita o tratamento eficaz das doenças inflamatórias desmielinizantes, como a Esclerose Múltipla. ABSTRACT Multiple Sclerosis (MS) is a chronic demyelinating disease of the Central Nervous System (CNS), caused, mainly, by an immune-mediated attack against several elements of the myelin sheath. Among the antigenic targets for this autoimmune response, several proteic and lipidic myelin components have been identified throughout the years, of which myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), proteolipidic protein (PLP), and myelin associated glycoprotein (MAG) are the best characterized. With the development of the animal model for MS, Experimental Autoimmune Encephalomyelitis (EAE), several antigen-specific therapies have been designed, based on beneficial modifications of the autoimmune response against myelin. These have included myelin and myelin component administration, therapeutic copolymers, altered peptide ligands and, more recently, vaccination with myelin-protein encoding deoxyribonucleic acid (DNA), integrated into plasmids and purified for parenteral administration. In this work we present the results of an extensive series of experiments, subordinate to two fundamental areas: 1) evaluating the therapeutic potential, and mechanisms of action, of tolerizing myelin protein (MBP, MOG, PLP, MAG) DNA vaccination in EAE, alone and in association with Th2 cytokine DNA administration, or immunomodulatory oligonucleotides; 2) identifying and characterizing the immuneresponse against a new myelin component with antigenic potential, the axonal regrowth inhibitor Nogo-A. Regarding DNA vaccination, our results prove the efficacy of this antigen-specific therapy for the prevention and treatment of EAE. Its mechanisms of action include, among others, anergic suppression of antigen-specific T-cell proliferation against myelin (in prevention mode), Th2 biasing of the immune response (when co-administered with the IL- 4 codifying DNA vaccine, acting as local gene therapy), and reduction of epitope spreading of the anti-myelin antibody response, assessed by myelin spotted arrays. The combination of myelin DNA vaccination with the administration of GpG immunomodulatory oligonucleotides, designed to counteract immunostimulatory CpG motifs present in the vaccination vector, led to an improvement in therapeutic efficacy, probably due to the preferential stimulatory effect of GpG oligonucleotides on Th2 lymphocytes and on regulatory NK-T cells. Based on these results, tolerizing DNA vaccination is being developed for human use, with ongoing clinical trials. As concerns the Nogo-A protein, based on studies of primary structure and prediction of antigenicity, we identified the Nogo-66 region (responsible for the most of the inhibitory capacity of this protein) as a potential antigenic target for EAE. In the SJL/Jand C57BL/6 mouse strains, we were able to induce clinical and histological signs of EAE,after immunization with the encefalitogenic epitopes Nogo1-22, Nogo23-44 and Nogo45-66,using a tolerance breakdown protocol. Concomitantly, we identified and characterized a specific T cell response against these antigens, together with a B cell response which showed extensive intra and intermolecular epitope spread to several determinants present in other myelin proteins. Adoptive transfer of nti-Nogo45-66 Th2 cell lines resulted in clinical and histological improvement of EAE in recipient animals induced with other myelin antigens, after intraparenchymal CNS migration of anti-Nogo cells. These data confirm the relevance of Nogo-66 as an antigen in EAE, as well as the efficacy of antigenspecific therapies based on the response against this protein.In conclusion, our results substantiate the therapeutic potential of myelin-encoding DNA vaccination, as well as the importance of encefalitogenic epitopes present in the Nogo-A protein for the pathophysiology of EAE and MS, with potential relevance for the creation of new antigen specific-therapies. The future development of these therapies may eventually lead to a degree of manipulation of the immune response that allows the effective treatment of autoimmune, inflammatory, demyelinating diseases, such as Multiple Sclerosis.
Resumo:
We present the case of a 15-year-old patient infected with HTLV-1 who developed a cutaneous T-cell lymphoma, confirmed by histopathological and immunohistochemical examination, as well as clinically and hematologically confirmed leukemia. The patient died 3 months after initial presentation of the disease. The rarity of the disease in this age group justifies the present report.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Física