954 resultados para insect infestation
Resumo:
Plant biosecurity requires statistical tools to interpret field surveillance data in order to manage pest incursions that threaten crop production and trade. Ultimately, management decisions need to be based on the probability that an area is infested or free of a pest. Current informal approaches to delimiting pest extent rely upon expert ecological interpretation of presence / absence data over space and time. Hierarchical Bayesian models provide a cohesive statistical framework that can formally integrate the available information on both pest ecology and data. The overarching method involves constructing an observation model for the surveillance data, conditional on the hidden extent of the pest and uncertain detection sensitivity. The extent of the pest is then modelled as a dynamic invasion process that includes uncertainty in ecological parameters. Modelling approaches to assimilate this information are explored through case studies on spiralling whitefly, Aleurodicus dispersus and red banded mango caterpillar, Deanolis sublimbalis. Markov chain Monte Carlo simulation is used to estimate the probable extent of pests, given the observation and process model conditioned by surveillance data. Statistical methods, based on time-to-event models, are developed to apply hierarchical Bayesian models to early detection programs and to demonstrate area freedom from pests. The value of early detection surveillance programs is demonstrated through an application to interpret surveillance data for exotic plant pests with uncertain spread rates. The model suggests that typical early detection programs provide a moderate reduction in the probability of an area being infested but a dramatic reduction in the expected area of incursions at a given time. Estimates of spiralling whitefly extent are examined at local, district and state-wide scales. The local model estimates the rate of natural spread and the influence of host architecture, host suitability and inspector efficiency. These parameter estimates can support the development of robust surveillance programs. Hierarchical Bayesian models for the human-mediated spread of spiralling whitefly are developed for the colonisation of discrete cells connected by a modified gravity model. By estimating dispersal parameters, the model can be used to predict the extent of the pest over time. An extended model predicts the climate restricted distribution of the pest in Queensland. These novel human-mediated movement models are well suited to demonstrating area freedom at coarse spatio-temporal scales. At finer scales, and in the presence of ecological complexity, exploratory models are developed to investigate the capacity for surveillance information to estimate the extent of red banded mango caterpillar. It is apparent that excessive uncertainty about observation and ecological parameters can impose limits on inference at the scales required for effective management of response programs. The thesis contributes novel statistical approaches to estimating the extent of pests and develops applications to assist decision-making across a range of plant biosecurity surveillance activities. Hierarchical Bayesian modelling is demonstrated as both a useful analytical tool for estimating pest extent and a natural investigative paradigm for developing and focussing biosecurity programs.
Resumo:
A system for agroinoculating rice tungro bacilliform virus (RTBV), one of the two viruses of the rice tungro disease complex, has been optimised. A nontumour-inducing strain of Agrobacterium (pGV3850) was used in order to conform with biosafety regulations. Fourteen-day-old seedlings survived the mechanical damage of the technique and were still young enough to support virus replication. The level of the bacterial inoculum was important to obtain maximum infection, with a high inoculum level (0.5 × 1012 cells/ml) resulting in up to 100% infection of a susceptible variety that was comparable with infection by insect transmission. Agroinoculation with RTBV was successful for all three rice cultivarss tested; TN1 (tungro susceptible), Balimau Putih (tungro tolerant), and IR26 (RTSV and vector resistant). Agroinoculation enables resistance to RTBV to be distinguished from resistance to the leafhopper vector of the virus, and should prove useful in screening rice germplasm, breeding materials, and transgenic rice lines.
Resumo:
Stigmergy is a biological term used when discussing insect or swarm behaviour, and describes a model supporting environmental communication separately from artefacts or agents. This phenomenon is demonstrated in the behavior of ants and their food gathering process when following pheromone trails, or similarly termites and their termite mound building process. What is interesting with this mechanism is that highly organized societies are achieved with a lack of any apparent management structure. Stigmergic behavior is implicit in the Web where the volume of users provides a self-organizing and self-contextualization of content in sites which facilitate collaboration. However, the majority of content is generated by a minority of the Web participants. A significant contribution from this research would be to create a model of Web stigmergy, identifying virtual pheromones and their importance in the collaborative process. This paper explores how exploiting stigmergy has the potential of providing a valuable mechanism for identifying and analyzing online user behavior recording actionable knowledge otherwise lost in the existing web interaction dynamics. Ultimately this might assist our building better collaborative Web sites.
Resumo:
Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.
Resumo:
Insect monitoring and sampling programmes are used in the stored grains industry for the detection and estimation of insect pests. At the low pest densities dictated by economic and commercial requirements, the accuracy of both detection and abundance estimates can be influenced by variations in the spatial structure of pest populations over short distances. Geostatistical analysis of Rhyzopertha dominica populations in 2 dimensions showed that, in both the horizontal and vertical directions and at all temperatures examined, insect numbers were positively correlated over short (0-5cm) distances, and negatively correlated over longer (≥10cm) distances. Analysis in 3 dimensions showed a similar pattern, with positive correlations over short distances and negative correlations at longer distances. At 35°C, insects were located significantly further from the grain surface than at 25 and 30°C. Dispersion metrics showed statistically significant aggregation in all cases. This is the first research using small sample units, high sampling intensities, and a range of temperatures, to show spatial structuring of R. dominica populations over short distances. This research will have significant implications for sampling in the stored grains industry.
Resumo:
The monogeneric family Fergusoninidae consists of gall-forming flies that, together with Fergusobia (Tylenchida: Neotylenchidae) nematodes, form the only known mutualistic association between insects and nematodes. In this study, the entire 16,000 bp mitochondrial genome of Fergusonina taylori Nelson and Yeates was sequenced. The circular genome contains one encoding region including 27 genes and one non-coding A þT-rich region. The arrangement of the proteincoding, ribosomal RNA (rRNA) and transfer RNA (tRNA) genes was the same as that found in the ancestral insect. Nucleotide composition is highly A þ T biased. All of the protein initiation codons are ATN, except for nad1 which begins with TTT. All 22 tRNA anticodons of F. taylori match those observed in Drosophila yakuba, and all form the typical cloverleaf structure except for tRNA-Ser (AGN) which lacks a dihydrouridine (DHU) arm. Secondary structural features of the rRNA genes of Fergusonina are similar to those proposed for other insects, with minor modifications. The mitochondrial genome of Fergusonina presented here may prove valuable for resolving the sister group to the Fergusoninidae, and expands the available mtDNA data sources for acalyptrates overall.
Resumo:
Designing practical rules for controlling invasive species is a challenging task for managers, particularly when species are long-lived, have complex life cycles and high dispersal capacities. Previous findings derived from plant matrix population analyses suggest that effective control of long-lived invaders may be achieved by focusing on killing adult plants. However, the cost-effectiveness of managing different life stages has not been evaluated. We illustrate the benefits of integrating matrix population models with decision theory to undertake this evaluation, using empirical data from the largest infestation of mesquite (Leguminosae: Prosopis spp) within Australia. We include in our model the mesquite life cycle, different dispersal rates and control actions that target individuals at different life stages with varying costs, depending on the intensity of control effort. We then use stochastic dynamic programming to derive cost-effective control strategies that minimize the cost of controlling the core infestation locally below a density threshold and the future cost of control arising from infestation of adjacent areas via seed dispersal. Through sensitivity analysis, we show that four robust management rules guide the allocation of resources between mesquite life stages for this infestation: (i) When there is no seed dispersal, no action is required until density of adults exceeds the control threshold and then only control of adults is needed; (ii) when there is seed dispersal, control strategy is dependent on knowledge of the density of adults and large juveniles (LJ) and broad categories of dispersal rates only; (iii) if density of adults is higher than density of LJ, controlling adults is most cost-effective; (iv) alternatively, if density of LJ is equal or higher than density of adults, management efforts should be spread between adults, large and to a lesser extent small juveniles, but never saplings. Synthesis and applications.In this study, we show that simple rules can be found for managing invasive plants with complex life cycles and high dispersal rates when population models are combined with decision theory. In the case of our mesquite population, focussing effort on controlling adults is not always the most cost-effective way to meet our management objective.
Resumo:
Building Web 2.0 sites does not necessarily ensure the success of the site. We aim to better understand what improves the success of a site by drawing insight from biologically inspired design patterns. Web 2.0 sites provide a mechanism for human interaction enabling powerful intercommunication between massive volumes of users. Early Web 2.0 site providers that were previously dominant are being succeeded by newer sites providing innovative social interaction mechanisms. Understanding what site traits contribute to this success drives research into Web sites mechanics using models to describe the associated social networking behaviour. Some of these models attempt to show how the volume of users provides a self-organising and self-contextualisation of content. One model describing coordinated environments is called stigmergy, a term originally describing coordinated insect behavior. This paper explores how exploiting stigmergy can provide a valuable mechanism for identifying and analysing online user behavior specifically when considering that user freedom of choice is restricted by the provided web site functionality. This will aid our building better collaborative Web sites improving the collaborative processes.
Resumo:
Despite their ecological significance as decomposers and their evolutionary significance as the most speciose eusocial insect group outside the Hymenoptera, termite (Blattodea: Termitoidae or Isoptera) evolutionary relationships have yet to be well resolved. Previous morphological and molecular analyses strongly conflict at the family level and are marked by poor support for backbone nodes. A mitochondrial (mt) genome phylogeny of termites was produced to test relationships between the recognised termite families, improve nodal support and test the phylogenetic utility of rare genomic changes found in the termite mt genome. Complete mt genomes were sequenced for 7 of the 9 extant termite families with additional representatives of each of the two most speciose families Rhinotermitidae (3 of 7 subfamilies) and Termitidae (3 of 8 subfamilies). The mt genome of the well supported sister group of termites, the subsocial cockroach Cryptocercus, was also sequenced. A highly supported tree of termite relationships was produced by all analytical methods and data treatment approaches, however the relationship of the termites + Cryptocercus clade to other cockroach lineages was highly affected by the strong nucleotide compositional bias found in termites relative to other dictyopterans. The phylogeny supports previously proposed suprafamilial termite lineages, the Euisoptera and Neoisoptera, a later derived Kalotermitidae as sister group of the Neoisoptera and a monophyletic clade of dampwood (Stolotermitidae, Archotermopsidae) and harvester termites (Hodotermitidae). In contrast to previous termite phylogenetic studies, nodal supports were very high for family-level relationships within termites. Two rare genomic changes in the mt genome control region were found to be molecular synapomorphies for major clades. An elongated stem-loop structure defined the clade Polyphagidae + (Cryptocercus + termites), and a further series of compensatory base changes in this stem loop is synapomorphic for the Neoisoptera. The complicated repeat structures first identified in Reticulitermes, composed of short (A-type) and long (B-type repeats) defines the clade Heterotermitinae + Termitidae, while the secondary loss of A-type repeats is synapomorphic for the non-macrotermitine Termitidae.
Resumo:
The common brown leafhopper Orosius orientalis (Hemiptera: Cicadellidae) is a polyphagous vector of a range of economically important pathogens, including phytoplasmas and viruses, which infect a diverse range of crops. Studies on the plant penetration behaviour by O. orientalis were conducted using the electrical penetration graph (EPG) technique to assist in the characterisation of pathogen acquisition and transmission. EPG waveforms representing different probing activities were acquired from adult O. orientalis probing in planta, using two host species, tobacco Nicotiana tabacum and bean Phaseolus vulgaris, and in vitro using a simple sucrose-based artificial diet. Five waveforms (O1–O5) were evident when O. orientalis fed on bean, whereas only four waveforms (O1–O4) and three waveforms (O1–O3) were observed when the leafhopper fed on tobacco and on the artificial diet, respectively. Both the mean duration of each waveform and waveform type differed markedly depending on the food substrate. Waveform O4 was not observed on the artificial diet and occurred relatively rarely on tobacco plants when compared with bean plants. Waveform O5 was only observed with leafhoppers probing on beans. The attributes of the waveforms and comparative analyses with previously published Hemipteran data are presented and discussed, but further characterisation studies will be needed to confirm our suggestions.
Resumo:
Dengue fever is the most important mosquito-borne viral disease of humans with more than 50 million cases estimated annually in more than 100 countries. Disturbingly, the geographic range of dengue is currently expanding and the severity of outbreaks is increasing. Control options for dengue are very limited and currently focus on reducing population abundance of the major mosquito vector, Aedes aegypti. These strategies are failing to reduce dengue incidence in tropical communities and there is an urgent need for effective alternatives. It has been proposed that endosymbiotic bacterial Wolbachia infections of insects might be used in novel strategies for dengue control. For example, the wMelPop-CLA Wolbachia strain reduces the lifespan of adult A. aegypti mosquitoes in stably transinfected lines. This life-shortening phenotype was predicted to reduce the potential for dengue transmission. The recent discovery that several Wolbachia infections, including wMelPop-CLA, can also directly influence the susceptibility of insects to infection with a range of insect and human pathogens has markedly changed the potential for Wolbachia infections to control human diseases. Here we describe the successful transinfection of A. aegypti with the avirulent wMel strain of Wolbachia, which induces the reproductive phenotype cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, providing optimal phenotypic effects for invasion. Under semi-field conditions, the wMel strain increased from an initial starting frequency of 0.65 to near fixation within a few generations, invading A. aegypti populations at an accelerated rate relative to trials with the wMelPop-CLA strain. We also show that wMel and wMelPop-CLA strains block transmission of dengue serotype 2 (DENV-2) in A. aegypti, forming the basis of a practical approach to dengue suppression.