855 resultados para information security policy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonlinear filter generators are common components used in the keystream generators for stream ciphers and more recently for authentication mechanisms. They consist of a Linear Feedback Shift Register (LFSR) and a nonlinear Boolean function to mask the linearity of the LFSR output. Properties of the output of a nonlinear filter are not well studied. Anderson noted that the m-tuple output of a nonlinear filter with consecutive taps to the filter function is unevenly distributed. Current designs use taps which are not consecutive. We examine m-tuple outputs from nonlinear filter generators constructed using various LFSRs and Boolean functions for both consecutive and uneven (full positive difference sets where possible) tap positions. The investigation reveals that in both cases, the m-tuple output is not uniform. However, consecutive tap positions result in a more biased distribution than uneven tap positions, with some m-tuples not occurring at all. These biased distributions indicate a potential flaw that could be exploited for cryptanalysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional speech enhancement methods optimise signal-level criteria such as signal-to-noise ratio, but these approaches are sub-optimal for noise-robust speech recognition. Likelihood-maximising (LIMA) frameworks are an alternative that optimise parameters of enhancement algorithms based on state sequences generated for utterances with known transcriptions. Previous reports of LIMA frameworks have shown significant promise for improving speech recognition accuracies under additive background noise for a range of speech enhancement techniques. In this paper we discuss the drawbacks of the LIMA approach when multiple layers of acoustic mismatch are present – namely background noise and speaker accent. Experimentation using LIMA-based Mel-filterbank noise subtraction on American and Australian English in-car speech databases supports this discussion, demonstrating that inferior speech recognition performance occurs when a second layer of mismatch is seen during evaluation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional speech enhancement methods optimise signal-level criteria such as signal-to-noise ratio, but such approaches are sub-optimal for noise-robust speech recognition. Likelihood-maximising (LIMA) frameworks on the other hand, optimise the parameters of speech enhancement algorithms based on state sequences generated by a speech recogniser for utterances of known transcriptions. Previous applications of LIMA frameworks have generated a set of global enhancement parameters for all model states without taking in account the distribution of model occurrence, making optimisation susceptible to favouring frequently occurring models, in particular silence. In this paper, we demonstrate the existence of highly disproportionate phonetic distributions on two corpora with distinct speech tasks, and propose to normalise the influence of each phone based on a priori occurrence probabilities. Likelihood analysis and speech recognition experiments verify this approach for improving ASR performance in noisy environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multi-disciplinary approaches to complex problems are becoming more common – they enable criteria manifested in distinct (and potentially conflicting) domains to be jointly balanced and satisfied. In this paper we present airport terminals as a case study which requires multi-disciplinary knowledge in order to balance conflicting security, economic and passenger-driven needs and correspondingly enhance the design, management and operation of airport terminals. The need for a truly multi-disciplinary scientific approach which integrates information, process, people, technology and space domains is highlighted through a brief discussion of two challenges currently faced by airport operators. The paper outlines the approach taken by this project, detailing the aims and objectives of each of seven diverse research programs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In public venues, crowd size is a key indicator of crowd safety and stability. In this paper we propose a crowd counting algorithm that uses tracking and local features to count the number of people in each group as represented by a foreground blob segment, so that the total crowd estimate is the sum of the group sizes. Tracking is employed to improve the robustness of the estimate, by analysing the history of each group, including splitting and merging events. A simplified ground truth annotation strategy results in an approach with minimal setup requirements that is highly accurate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reputation and proof-of-work systems have been outlined as methods bot masters will soon use to defend their peer-to-peer botnets. These techniques are designed to prevent sybil attacks, such as those that led to the downfall of the Storm botnet. To evaluate the effectiveness of these techniques, a botnet that employed these techniques was simulated, and the amount of resources required to stage a successful sybil attack against it measured. While the proof-of-work system was found to increase the resources required for a successful sybil attack, the reputation system was found to lower the amount of resources required to disable the botnet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RFID has been widely used in today's commercial and supply chain industry, due to the significant advantages it offers and the relatively low production cost. However, this ubiquitous technology has inherent problems in security and privacy. This calls for the development of simple, efficient and cost effective mechanisms against a variety of security threats. This paper proposes a two-step authentication protocol based on the randomized hash-lock scheme proposed by S. Weis in 2003. By introducing additional measures during the authentication process, this new protocol proves to enhance the security of RFID significantly, and protects the passive tags from almost all major attacks, including tag cloning, replay, full-disclosure, tracking, and eavesdropping. Furthermore, no significant changes to the tags is required to implement this protocol, and the low complexity level of the randomized hash-lock algorithm is retained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is devoted to the study of linear relationships in symmetric block ciphers. A block cipher is designed so that the ciphertext is produced as a nonlinear function of the plaintext and secret master key. However, linear relationships within the cipher can still exist if the texts and components of the cipher are manipulated in a number of ways, as shown in this thesis. There are four main contributions of this thesis. The first contribution is the extension of the applicability of integral attacks from word-based to bitbased block ciphers. Integral attacks exploit the linear relationship between texts at intermediate stages of encryption. This relationship can be used to recover subkey bits in a key recovery attack. In principle, integral attacks can be applied to bit-based block ciphers. However, specific tools to define the attack on these ciphers are not available. This problem is addressed in this thesis by introducing a refined set of notations to describe the attack. The bit patternbased integral attack is successfully demonstrated on reduced-round variants of the block ciphers Noekeon, Present and Serpent. The second contribution is the discovery of a very small system of equations that describe the LEX-AES stream cipher. LEX-AES is based heavily on the 128-bit-key (16-byte) Advanced Encryption Standard (AES) block cipher. In one instance, the system contains 21 equations and 17 unknown bytes. This is very close to the upper limit for an exhaustive key search, which is 16 bytes. One only needs to acquire 36 bytes of keystream to generate the equations. Therefore, the security of this cipher depends on the difficulty of solving this small system of equations. The third contribution is the proposal of an alternative method to measure diffusion in the linear transformation of Substitution-Permutation-Network (SPN) block ciphers. Currently, the branch number is widely used for this purpose. It is useful for estimating the possible success of differential and linear attacks on a particular SPN cipher. However, the measure does not give information on the number of input bits that are left unchanged by the transformation when producing the output bits. The new measure introduced in this thesis is intended to complement the current branch number technique. The measure is based on fixed points and simple linear relationships between the input and output words of the linear transformation. The measure represents the average fraction of input words to a linear diffusion transformation that are not effectively changed by the transformation. This measure is applied to the block ciphers AES, ARIA, Serpent and Present. It is shown that except for Serpent, the linear transformations used in the block ciphers examined do not behave as expected for a random linear transformation. The fourth contribution is the identification of linear paths in the nonlinear round function of the SMS4 block cipher. The SMS4 block cipher is used as a standard in the Chinese Wireless LAN Wired Authentication and Privacy Infrastructure (WAPI) and hence, the round function should exhibit a high level of nonlinearity. However, the findings in this thesis on the existence of linear relationships show that this is not the case. It is shown that in some exceptional cases, the first four rounds of SMS4 are effectively linear. In these cases, the effective number of rounds for SMS4 is reduced by four, from 32 to 28. The findings raise questions about the security provided by SMS4, and might provide clues on the existence of a flaw in the design of the cipher.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The loosely-coupled and dynamic nature of web services architectures has many benefits, but also leads to an increased vulnerability to denial of service attacks. While many papers have surveyed and described these vulnerabilities, they are often theoretical and lack experimental data to validate them, and assume an obsolete state of web services technologies. This paper describes experiments involving several denial of service vulnerabilities in well-known web services platforms, including Java Metro, Apache Axis, and Microsoft .NET. The results both confirm and deny the presence of some of the most well-known vulnerabilities in web services technologies. Specifically, major web services platforms appear to cope well with attacks that target memory exhaustion. However, attacks targeting CPU-time exhaustion are still effective, regardless of the victim’s platform.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The material presented in this thesis may be viewed as comprising two key parts, the first part concerns batch cryptography specifically, whilst the second deals with how this form of cryptography may be applied to security related applications such as electronic cash for improving efficiency of the protocols. The objective of batch cryptography is to devise more efficient primitive cryptographic protocols. In general, these primitives make use of some property such as homomorphism to perform a computationally expensive operation on a collective input set. The idea is to amortise an expensive operation, such as modular exponentiation, over the input. Most of the research work in this field has concentrated on its employment as a batch verifier of digital signatures. It is shown that several new attacks may be launched against these published schemes as some weaknesses are exposed. Another common use of batch cryptography is the simultaneous generation of digital signatures. There is significantly less previous work on this area, and the present schemes have some limited use in practical applications. Several new batch signatures schemes are introduced that improve upon the existing techniques and some practical uses are illustrated. Electronic cash is a technology that demands complex protocols in order to furnish several security properties. These typically include anonymity, traceability of a double spender, and off-line payment features. Presently, the most efficient schemes make use of coin divisibility to withdraw one large financial amount that may be progressively spent with one or more merchants. Several new cash schemes are introduced here that make use of batch cryptography for improving the withdrawal, payment, and deposit of electronic coins. The devised schemes apply both to the batch signature and verification techniques introduced, demonstrating improved performance over the contemporary divisible based structures. The solutions also provide an alternative paradigm for the construction of electronic cash systems. Whilst electronic cash is used as the vehicle for demonstrating the relevance of batch cryptography to security related applications, the applicability of the techniques introduced extends well beyond this.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Forensic imaging has been facing scalability challenges for some time. As disk capacity growth continues to outpace storage IO bandwidth, the demands placed on storage and time are ever increasing. Data reduction and de-duplication technologies are now commonplace in the Enterprise space, and are potentially applicable to forensic acquisition. Using the new AFF4 forensic file format we employ a hash based compression scheme to leverage an existing corpus of images, reducing both acquisition time and storage requirements. This paper additionally describes some of the recent evolution in the AFF4 file format making the efficient implementation of hash based imaging a reality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stream ciphers are encryption algorithms used for ensuring the privacy of digital telecommunications. They have been widely used for encrypting military communications, satellite communications, pay TV encryption and for voice encryption of both fixed lined and wireless networks. The current multi year European project eSTREAM, which aims to select stream ciphers suitable for widespread adoptation, reflects the importance of this area of research. Stream ciphers consist of a keystream generator and an output function. Keystream generators produce a sequence that appears to be random, which is combined with the plaintext message using the output function. Most commonly, the output function is binary addition modulo two. Cryptanalysis of these ciphers focuses largely on analysis of the keystream generators and of relationships between the generator and the keystream it produces. Linear feedback shift registers are widely used components in building keystream generators, as the sequences they produce are well understood. Many types of attack have been proposed for breaking various LFSR based stream ciphers. A recent attack type is known as an algebraic attack. Algebraic attacks transform the problem of recovering the key into a problem of solving multivariate system of equations, which eventually recover the internal state bits or the key bits. This type of attack has been shown to be effective on a number of regularly clocked LFSR based stream ciphers. In this thesis, algebraic attacks are extended to a number of well known stream ciphers where at least one LFSR in the system is irregularly clocked. Applying algebriac attacks to these ciphers has only been discussed previously in the open literature for LILI-128. In this thesis, algebraic attacks are first applied to keystream generators using stop-and go clocking. Four ciphers belonging to this group are investigated: the Beth-Piper stop-and-go generator, the alternating step generator, the Gollmann cascade generator and the eSTREAM candidate: the Pomaranch cipher. It is shown that algebraic attacks are very effective on the first three of these ciphers. Although no effective algebraic attack was found for Pomaranch, the algebraic analysis lead to some interesting findings including weaknesses that may be exploited in future attacks. Algebraic attacks are then applied to keystream generators using (p; q) clocking. Two well known examples of such ciphers, the step1/step2 generator and the self decimated generator are investigated. Algebraic attacks are shown to be very powerful attack in recovering the internal state of these generators. A more complex clocking mechanism than either stop-and-go or the (p; q) clocking keystream generators is known as mutual clock control. In mutual clock control generators, the LFSRs control the clocking of each other. Four well known stream ciphers belonging to this group are investigated with respect to algebraic attacks: the Bilateral-stop-and-go generator, A5/1 stream cipher, Alpha 1 stream cipher, and the more recent eSTREAM proposal, the MICKEY stream ciphers. Some theoretical results with regards to the complexity of algebraic attacks on these ciphers are presented. The algebraic analysis of these ciphers showed that generally, it is hard to generate the system of equations required for an algebraic attack on these ciphers. As the algebraic attack could not be applied directly on these ciphers, a different approach was used, namely guessing some bits of the internal state, in order to reduce the degree of the equations. Finally, an algebraic attack on Alpha 1 that requires only 128 bits of keystream to recover the 128 internal state bits is presented. An essential process associated with stream cipher proposals is key initialization. Many recently proposed stream ciphers use an algorithm to initialize the large internal state with a smaller key and possibly publicly known initialization vectors. The effect of key initialization on the performance of algebraic attacks is also investigated in this thesis. The relationships between the two have not been investigated before in the open literature. The investigation is conducted on Trivium and Grain-128, two eSTREAM ciphers. It is shown that the key initialization process has an effect on the success of algebraic attacks, unlike other conventional attacks. In particular, the key initialization process allows an attacker to firstly generate a small number of equations of low degree and then perform an algebraic attack using multiple keystreams. The effect of the number of iterations performed during key initialization is investigated. It is shown that both the number of iterations and the maximum number of initialization vectors to be used with one key should be carefully chosen. Some experimental results on Trivium and Grain-128 are then presented. Finally, the security with respect to algebraic attacks of the well known LILI family of stream ciphers, including the unbroken LILI-II, is investigated. These are irregularly clock- controlled nonlinear filtered generators. While the structure is defined for the LILI family, a particular paramater choice defines a specific instance. Two well known such instances are LILI-128 and LILI-II. The security of these and other instances is investigated to identify which instances are vulnerable to algebraic attacks. The feasibility of recovering the key bits using algebraic attacks is then investigated for both LILI- 128 and LILI-II. Algebraic attacks which recover the internal state with less effort than exhaustive key search are possible for LILI-128 but not for LILI-II. Given the internal state at some point in time, the feasibility of recovering the key bits is also investigated, showing that the parameters used in the key initialization process, if poorly chosen, can lead to a key recovery using algebraic attacks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ubiquitous access to patient medical records is an important aspect of caring for patient safety. Unavailability of sufficient medical information at the point-ofcare could possibly lead to a fatality. The U.S. Institute of Medicine has reported that between 44,000 and 98,000 people die each year due to medical errors, such as incorrect medication dosages, due to poor legibility in manual records, or delays in consolidating needed information to discern the proper intervention. In this research we propose employing emergent technologies such as Java SIM Cards (JSC), Smart Phones (SP), Next Generation Networks (NGN), Near Field Communications (NFC), Public Key Infrastructure (PKI), and Biometric Identification to develop a secure framework and related protocols for ubiquitous access to Electronic Health Records (EHR). A partial EHR contained within a JSC can be used at the point-of-care in order to help quick diagnosis of a patient’s problems. The full EHR can be accessed from an Electronic Health Records Centre (EHRC) when time and network availability permit. Moreover, this framework and related protocols enable patients to give their explicit consent to a doctor to access their personal medical data, by using their Smart Phone, when the doctor needs to see or update the patient’s medical information during an examination. Also our proposed solution would give the power to patients to modify the Access Control List (ACL) related to their EHRs and view their EHRs through their Smart Phone. Currently, very limited research has been done on using JSCs and similar technologies as a portable repository of EHRs or on the specific security issues that are likely to arise when JSCs are used with ubiquitous access to EHRs. Previous research is concerned with using Medicare cards, a kind of Smart Card, as a repository of medical information at the patient point-of-care. However, this imposes some limitations on the patient’s emergency medical care, including the inability to detect the patient’s location, to call and send information to an emergency room automatically, and to interact with the patient in order to get consent. The aim of our framework and related protocols is to overcome these limitations by taking advantage of the SIM card and the technologies mentioned above. Briefly, our framework and related protocols will offer the full benefits of accessing an up-to-date, precise, and comprehensive medical history of a patient, whilst its mobility will provide ubiquitous access to medical and patient information everywhere it is needed. The objective of our framework and related protocols is to automate interactions between patients, healthcare providers and insurance organisations, increase patient safety, improve quality of care, and reduce the costs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As the acceptance and popularity of wireless networking technologies has proliferated, the security of the IEEE 802.11 wireless local area network (WLAN) has advanced in leaps and bounds. From tenuous beginnings, where the only safe way to deploy a WLAN was to assume it was hostile and employ higherlayer information security controls, to the current state of the art, all manner of improvements have been conceived and many implemented. This work investigates some of the remaining issues surrounding IEEE 802.11 WLAN operation. While the inherent issues in WLAN deployments and the problems of the original Wired Equivalent Privacy (WEP) provisions are well known and widely documented, there still exist a number of unresolved security issues. These include the security of management and control frames and the data link layer protocols themselves. This research introduces a novel proposal to enhance security at the link layer of IEEE 802.11 WLANs and then conducts detailed theoretical and empirical investigation and analysis of the eects of such proposals. This thesis �rst de�nes the state of the art in WLAN technology and deployment, including an overview of the current and emerging standards, the various threats, numerous vulnerabilities and current exploits. The IEEE 802.11i MAC security enhancements are discussed in detail, along with the likely outcomes of the IEEE 802.11 Task Group W1, looking into protected management frames. The problems of the remaining unprotected management frames, the unprotected control frames and the unprotected link layer headers are reviewed and a solution is hypothesised, to encrypt the entire MAC Protocol Data Unit (MPDU), including the MAC headers, not just the MAC Service Data Unit (MSDU) commonly performed by existing protocols. The proposal is not just to encrypt a copy of the headers while still using cleartext addresses to deliver the frame, as used by some existing protocols to support the integrity and authenticity of the headers, but to pass the entire MPDU only as ciphertext to also support the con�dentiality of the frame header information. This necessitates the decryption of every received frame using every available key before a station can determine if it is the intended recipient. As such, this raises serious concerns as to the viability of any such proposal due to the likely impact on throughput and scalability. The bulk of the research investigates the impacts of such proposals on the current WLAN protocols. Some possible variations to the proposal are also provided to enhance both utility and speed. The viability this proposal with respect to the eect on network throughput is then tested using a well known and respected network simulation tool, along with a number of analysis tools developed speci�cally for the data generated here. The simulator's operation is �rst validated against recognised test outputs, before a comprehensive set of control data is established, and then the proposal is tested and and compared against the controls. This detailed analysis of the various simulations should be of bene�t to other researchers who need to validate simulation results. The analysis of these tests indicate areas of immediate improvement and so the protocols are adjusted and a further series of experiments conducted. These �nal results are again analysed in detail and �nal appraisals provided.