897 resultados para indigenous knowledge systems
Resumo:
Methods for tracking an object have generally fallen into two groups: tracking by detection and tracking through local optimization. The advantage of detection-based tracking is its ability to deal with target appearance and disappearance, but it does not naturally take advantage of target motion continuity during detection. The advantage of local optimization is efficiency and accuracy, but it requires additional algorithms to initialize tracking when the target is lost. To bridge these two approaches, we propose a framework for unified detection and tracking as a time-series Bayesian estimation problem. The basis of our approach is to treat both detection and tracking as a sequential entropy minimization problem, where the goal is to determine the parameters describing a target in each frame. To do this we integrate the Active Testing (AT) paradigm with Bayesian filtering, and this results in a framework capable of both detecting and tracking robustly in situations where the target object enters and leaves the field of view regularly. We demonstrate our approach on a retinal tool tracking problem and show through extensive experiments that our method provides an efficient and robust tracking solution.
Resumo:
In retinal surgery, surgeons face difficulties such as indirect visualization of surgical targets, physiological tremor, and lack of tactile feedback, which increase the risk of retinal damage caused by incorrect surgical gestures. In this context, intraocular proximity sensing has the potential to overcome current technical limitations and increase surgical safety. In this paper, we present a system for detecting unintentional collisions between surgical tools and the retina using the visual feedback provided by the opthalmic stereo microscope. Using stereo images, proximity between surgical tools and the retinal surface can be detected when their relative stereo disparity is small. For this purpose, we developed a system comprised of two modules. The first is a module for tracking the surgical tool position on both stereo images. The second is a disparity tracking module for estimating a stereo disparity map of the retinal surface. Both modules were specially tailored for coping with the challenging visualization conditions in retinal surgery. The potential clinical value of the proposed method is demonstrated by extensive testing using a silicon phantom eye and recorded rabbit in vivo data.
Resumo:
Indoor localization systems become more interesting for researchers because of the attractiveness of business cases in various application fields. A WiFi-based passive localization system can provide user location information to third-party providers of positioning services. However, indoor localization techniques are prone to multipath and Non-Line Of Sight (NLOS) propagation, which lead to significant performance degradation. To overcome these problems, we provide a passive localization system for WiFi targets with several improved algorithms for localization. Through Software Defined Radio (SDR) techniques, we extract Channel Impulse Response (CIR) information at the physical layer. CIR is later adopted to mitigate the multipath fading problem. We propose to use a Nonlinear Regression (NLR) method to relate the filtered power information to propagation distances, which significantly improves the ranging accuracy compared to the commonly used log-distance path loss model. To mitigate the influence of ranging errors, a new trilateration algorithm is designed as well by combining Weighted Centroid and Constrained Weighted Least Square (WC-CWLS) algorithms. Experiment results show that our algorithm is robust against ranging errors and outperforms the linear least square algorithm and weighted centroid algorithm.
Resumo:
Attractive business cases in various application fields contribute to the sustained long-term interest in indoor localization and tracking by the research community. Location tracking is generally treated as a dynamic state estimation problem, consisting of two steps: (i) location estimation through measurement, and (ii) location prediction. For the estimation step, one of the most efficient and low-cost solutions is Received Signal Strength (RSS)-based ranging. However, various challenges - unrealistic propagation model, non-line of sight (NLOS), and multipath propagation - are yet to be addressed. Particle filters are a popular choice for dealing with the inherent non-linearities in both location measurements and motion dynamics. While such filters have been successfully applied to accurate, time-based ranging measurements, dealing with the more error-prone RSS based ranging is still challenging. In this work, we address the above issues with a novel, weighted likelihood, bootstrap particle filter for tracking via RSS-based ranging. Our filter weights the individual likelihoods from different anchor nodes exponentially, according to the ranging estimation. We also employ an improved propagation model for more accurate RSS-based ranging, which we suggested in recent work. We implemented and tested our algorithm in a passive localization system with IEEE 802.15.4 signals, showing that our proposed solution largely outperforms a traditional bootstrap particle filter.
Resumo:
The nematode Caenorhabditis elegans is a well-known model organism used to investigate fundamental questions in biology. Motility assays of this small roundworm are designed to study the relationships between genes and behavior. Commonly, motility analysis is used to classify nematode movements and characterize them quantitatively. Over the past years, C. elegans' motility has been studied across a wide range of environments, including crawling on substrates, swimming in fluids, and locomoting through microfluidic substrates. However, each environment often requires customized image processing tools relying on heuristic parameter tuning. In the present study, we propose a novel Multi-Environment Model Estimation (MEME) framework for automated image segmentation that is versatile across various environments. The MEME platform is constructed around the concept of Mixture of Gaussian (MOG) models, where statistical models for both the background environment and the nematode appearance are explicitly learned and used to accurately segment a target nematode. Our method is designed to simplify the burden often imposed on users; here, only a single image which includes a nematode in its environment must be provided for model learning. In addition, our platform enables the extraction of nematode ‘skeletons’ for straightforward motility quantification. We test our algorithm on various locomotive environments and compare performances with an intensity-based thresholding method. Overall, MEME outperforms the threshold-based approach for the overwhelming majority of cases examined. Ultimately, MEME provides researchers with an attractive platform for C. elegans' segmentation and ‘skeletonizing’ across a wide range of motility assays.
Resumo:
We partially solve a long-standing problem in the proof theory of explicit mathematics or the proof theory in general. Namely, we give a lower bound of Feferman’s system T0 of explicit mathematics (but only when formulated on classical logic) with a concrete interpretat ion of the subsystem Σ12-AC+ (BI) of second order arithmetic inside T0. Whereas a lower bound proof in the sense of proof-theoretic reducibility or of ordinalanalysis was already given in 80s, the lower bound in the sense of interpretability we give here is new. We apply the new interpretation method developed by the author and Zumbrunnen (2015), which can be seen as the third kind of model construction method for classical theories, after Cohen’s forcing and Krivine’s classical realizability. It gives us an interpretation between classical theories, by composing interpretations between intuitionistic theories.
Resumo:
« Les littératures nationales ne signifient plus grand-chose aujourd’hui. Nous entrons dans l’ère de la littérature mondiale et il appartient à chacun de nous de hâter cette évolution » (Goethe). Milan Kundera, écrivain natif de Moravie ayant émigré en France en 1975, reprend à son compte cet idéal formulé en 1827 par Goethe et le réactive : selon lui, en effet, le seul contexte où peuvent véritablement se révéler le sens et la valeur d’une œuvre est le grand contexte de l’histoire supranationale. Dans cet espace de diversité où l’œuvre n’est pas soutenue par son prestige national, mais par son originalité, un roman tchèque (littérature d’une petite nation) aussi bien qu’un roman français (littérature d’une grande nation) peut trouver sa place. Comment faire une histoire de la littérature mondiale sans la présenter comme une juxtaposition d’histoires littéraires nationales ? C’est la question à laquelle cette conférence s’efforcera de répondre en s’appuyant sur les réflexions culturelles aussi bien que politiques de Milan Kundera.
Resumo:
The unprecedented success of social networking sites (SNSs) has been recently overshadowed by concerns about privacy risks. As SNS users grow weary of privacy breaches and thus develop distrust, they may restrict or even terminate their platform activities. In the long run, these developments endanger SNS platforms’ financial viability and undermine their ability to create individual and social value. By applying a justice perspective, this study aims to understand the means at the disposal of SNS providers to leverage the privacy concerns and trusting beliefs of their users—two important determinants of user participation on SNSs. Considering that SNSs have a global appeal, empirical tests assess the effectiveness of justice measures for three culturally distinct countries: Germany, Russia and Morocco. The results indicate that these measures are particularly suited to address trusting beliefs of SNS audience. Specifically, in all examined countries, procedural justice and the awareness dimension of informational justice improve perceptions of trust in the SNS provider. Privacy concerns, however, are not as easy to manage, because the impact of justice-based measures on privacy concerns is not universal. Beyond theoretical value, this research offers valuable practical insights into the use of justice-based measures to promote trust and mitigate privacy concerns in a cross-cultural setting.
Resumo:
Social networks offer horizontal integration for any mobile platform providing app users with a convenient single sign-on point. Nonetheless, there are growing privacy concerns regarding its use. These vulnerabilities trigger alarm among app developers who fight for their user base: While they are happy to act on users’ information collected via social networks, they are not always willing to sacrifice their adoption rate for this goal. So far, understanding of this trade-off has remained ambiguous. To fill this gap, we employ a discrete choice experiment to explore the role of Facebook Login and investigate the impact of accompanying requests for different information items / actions in the mobile app adoption process. We quantify users’ concerns regarding these items in monetary terms. Beyond hands-on insights for providers, our study contributes to the theoretical discourse on the value of privacy in the growing world of Social Media and mobile web.
Resumo:
Over the years, a drastic increase in online information disclosure spurs a wave of concerns from multiple stakeholders. Among others, users resent the “behind the closed doors” processing of their personal data by companies. Privacy policies are supposed to inform users how their personal information is handled by a website. However, several studies have shown that users rarely read privacy policies for various reasons, not least because limitedly readable policy texts are difficult to understand. Based on our online survey with over 440 responses, we examine the objective and subjective readability of privacy policies and investigate their impact on users’ trust in five big Internet services. Our findings show the stronger a user believes in having understood the privacy policy, the higher he or she trusts a web site across all companies we studied. Our results call for making readability of privacy policies more accessible to an average reader.