891 resultados para imunomodulação humoral
Resumo:
The alcoholic liver cirrhosis usually causes overall immunological changes which might be attributed to either the hepatic disease itself, to ethanol action and/or to malnourishment of the patient. These immune abnormalities comprise both cellular and humoral immunity, consisting of increased immunoglobulin levels, depressed late-skin response to antigens, lowered proliferative response of lymphocytes to mitogens, lower plasma levels of complement proteins (C3 and C4) and by either lower (IL2 and gamma IF) or increased (IL1, TNF, IL6 and IL8) cytokine levels. Parallel to the systemic immune suppression found in most patients, there is also a concomitant local, genetically based, immune stimulation at the liver level which leads to hepatic self-aggression. The systemic immune-suppression could be responsible for periodical infections or neoplasia found in these patients. The possible factors for the immune exhaustion are: a) lower hepatic clearance of toxins and/or bacteria; b) lower hepatic synthesis of complement components; c) cytokines (IL2 and gamma IF) deficiencies, and d) deficiencies of nutrients related to the antioxidant and/or immune defense mechanisms. The immune stimulation of the liver self aggression is characterized by the preferential migration of cytotoxic T cell and neutrophils to the liver, following stimulatory factors such as Mallory bodies, acetaldehyde and/or antibodies. Moreover, the local increase of cytokines (IL1, TNF, IL6 and IL8) levels would be liable for the local phagocyte chemotaxy (IL8) or part of liver injury (TNF) eased by the lower antioxidant defense of the cirrhotic liver.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Parasitic diseases in humans, transmitted by insects, affect about 500 million people living mainly in countries of low economic power. The control of these diseases is difficult to carry out, mianly due to social and political problems, enhanced by the capacity of these organisms to develop resistance to insecticides used to for their destruction. Some recent advances in the area of insect immunology have open the possibility for abetter epidemiological control of these diseases. The immune system of these insects, as well as that of other organisms, have the ability to recognize the infecting parasites and liberate a series of reactions which stop the infection. These reactions involve the circulating cells (hemocytes) against the parasite. These cells have the ability of phagocytize and liberate the production of various humoral factors, neutralizing the infection. Some promising results, obtained by the study of the immune system of malaria-transmitting insects, the sleeping disease, and dengue, are an example of this new sanitary strategy.
Resumo:
In renovascular hypertensive rats, low doses of angiotensin converting enzyme (ACE) inhibitors have been found to prevent myocardial hypertrophy independent of blood pressure level. This finding would suggest humoral rather than mechanical control of myocyte growth. The aim of this study was to examine the effect of nonantihypertensive doses of ACE inhibitor on myocardial hypertrophy and necrosis in hypertensive rats. Renovascular hypertension (RHT) was induced in four-week-old Wistar rats. Twenty-eight animals were treated for four weeks with three doses of ramipril (0.01, 0.1 or 1.0 mg/kg/day, which are unable to lower blood pressure. Fourteen animals were not treated (RHT group). A sham operated, age/sex-matched group was used as control (n=10). Myocardial histology was analysed in 3 μm thick sections of the ventricle stained with either haematoxylin-eosin, reticulin silver stain or Masson's trichrome. There was a significant correlation between systolic blood pressure and left ventricular to body weight ratio in both sets of animals: untreated plus controls and ramipril-treated rats. ACE inhibition prevented myocyte and perivascular necrosis and fibrosis in a dose-dependent manner. We conclude that myocardial hypertrophy in rats with renovascular hypertension is directly related to arterial pressure, and that this relationship is not affected by nonantihypertensive doses of ACE inhibitor. Myocardial necrosis/fibrosis and coronary artery damage induced by angiotensin II are prevented by ACE inhibitor in a dose-dependent manner, despite the presence of arterial hypertension.
Resumo:
Patients with chronic heart failure (CHF) may develop a wasting syndrome, termed cardiac cachexia. This condition should be diagnosed when weight loss of more than 7.5% of the premorbid normal weight occurs over a time period of more than 6 months. Although the pathophysiologic causes of body wasting in patients with CHF remain unclear, studies have suggested that reduction of the dietary ingestion, intestinal malabsorption of nutrients, increased resting metabolic rates, and humoral neuroendocrine and immunologic abnormalities may play a role. The development of cachexia in the patients with CHF results in clinical symptoms, adverse consequences on the heart, and impaired survival.
Resumo:
A comparative study was made regarding the clinical and hematological alterations caused by isolates of Babesia bigemina from southeastern, northeastern and northern Brazil in experimentally infected Nelore calves. Eighteen calves between 7 and 9 months of age, without antibodies against Babesia sp and raised free from ticks, were used. Three animals were previously inoculated with 2.0×109 parasitic erythrocytes (PE) for each stabilate. The other 15 calves were subdivided into three groups, with five animals each, that were subinoculated with 1.0×1010 PE of the respective isolates. The clinical and hematological alterations were evaluated by the determination of parasitaemia, haemogram, plasmatic fibrinogen, reticulocyte count, descriptive analysis of the bone marrow and erythrocytic osmotic fragility, for 30 days, totalizing seven moments of observation. The follow-up of the immunological response by the indirect fluorescent antibody test was carried out daily until the 10th day after inoculation (DAI) and after that, on the 15th, 20th, 25th and 30th DAI. A mild clinical manifestation of the disease was observed. The laboratory findings revealed low levels of parasitaemia; decrease of the erythrogram values; absence of reticulocytes, initial decrease in the total count of leukocytes, neutrophils and lymphocytes with a posterior elevation of the number of these cells; hypercellularity of the erythrocytic series and decrease of the myeloid: erythroid relation which was more accentuated between the 8th and 12th DAI, and an increase of the erythrocytic osmotic fragility in the groups inoculated with the Southeast and Northeast isolates. None of the three isolates of B. bigemina gave rise to the clinical characteristic form of the disease, although they induced an humoral immune response.
Resumo:
Rhodococcus equi is a Gram-positive, facultative intracellular bacterium which infects macrophages and causes rhodococcal pneumonia and enteritis in foals. Recently, this agent has been recognized as an opportunistic pathogen for immunocompromised humans. Several murine experimental models have been used to study R. equi infection. High (H IV-A) and Low (L IV-A) antibody (Ab)-producers mice were obtained by bi-directional genetic selections for their ability to produce antibodies against sheep and human erythrocytes (Selection IV-A). These lines maintain their phenotypes of high and low responders also for other antigens than those of selection (multispeciflc effect). A higher macrophage activity in L IV-A mice has been described for several intracellular infectious agents, which could be responsible for their intense macrophage antigens (Ag)-handling and low Ab production. Due to these differences, L IV-A mice were found to exhibit a better performance to trigger an effective immune response towards intracellular pathogens. The objective of this work was to characterize the immune response of Selection IV-A against R. equi. H IV-A and L IV-A mice were infected with 2.0 × 10 6 CFU of ATCC 33701 +R. equi by intravenous route. With regards to bacterial clearance and survival assays, L IV-A mice were more resistant than H IV-A mice to virulent R. equi. L IV-A mice presented a higher hydrogen peroxide (H 2O 2) and nitric oxide (NO) endogenous production by splenic macrophages than H IV-A mice. L IV-A expressed the most intense cellular response, available by the Delayed-Type Hypersensitivity (DTH) reaction, which activated macrophages and produced more H 2O 2 and NO. The three times higher specific antibodies titres in H IV-A indicated that Selection IV-A maintained the multispecific effect and the polygenic control of humoral and cellular responses also to R. equi.
Resumo:
The aim of the present study was to investigate the kinetics of humoral and cellular responses during leptospirosis. We observed that the presence of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) was associated with antibody production and bacterial recovery, and the compromising of both TNF-α and IL-6 in the immunopathogenesis of leptospirosis during an experimental infection of BALB/c mice inoculated with Leptospira interrogans serovar Canicola was verified. Results showed higher levels of TNF-α and IL-6 in the initial phase of infection, in which the greatest bacterial clearance was observed. However, when the bacterial recovery was compared with the kinetics of the production of antibodies, the results revealed a kinetics proportionally inverted to antibody production. This fact may be related to some inhibitory factor which could be responsible for the selective suppression of the cellular immune response. We concluded that during leptospirosis there was a greater mobilization of the cellular immune response activity, mainly in the initial phase of the infectious process, for posterior involvement of the humoral response, and that both TNF-α and IL-6 could be associated with the immunopathogenesis of the disease.
Resumo:
Mice genetically selected for high (H) and low (L) antibody production (Selection IV-A) were used as murine experimental model. The aim of the present work was to evaluate the macrophagic activity and to characterize the immune response in Mycobacterium bovis-AN5 infected mice (3×10 7 bacteria). The response profile previously observed in such strains was not similar to that obtained during M. bovis infection; however, it corroborated works carried out using Selection I, which is very similar to Selection IV-A regarding infection by M. tuberculosis and Bacillus Calmette-Guérin (BCG). Considering bacterial recovery, LIV-A mice showed higher control of the infectious process in the lungs than in the spleen, whereas HIV-A mice presented more resistance in the spleen. With respect to macrophagic activity, hydrogen peroxide (H2O 2) was probably not involved in the infection control since there was an inhibition in the production of this metabolite. Nitric oxide (NO) and TNF-α production seemed to be important in the control of bacterial replication and varied according to the strain, period and organ. Evaluation of the antibody production indicated that the multi-specific effect commonly observed in these strains was not the same in the response to M. bovis. Antibody concentrations were higher in LIV-A than in HIV-A mice at the beginning of the infection, being similar afterwards. Such data were compared with delayed-type hypersensitivity (DTH), which was more intense in HIV-A than in LIV-A mice, indicating that antibody production is independent of the capability to trigger DTH reactions and that cellular and humoral responses to M. bovis antigens show a polygenic control and an independent quantitative genetic regulation. Differences were observed among organs and metabolites, suggesting that different mechanisms play an important role in this infection in natural heterogeneous populations, indicating that NO, TNF-α and Th1 cytokines are involved in the infection control.
Resumo:
Sjögren's syndrome is an autoimmune disease characterized by sialoadenitis and elevated titers of autoantibodies. To assess whether it is possible to induce inflammatory changes in salivary gland tissues, a series of immunizations in Balb/c mice have been undertaken, using salivary gland extract, modified or not, added to several adjuvants. Mice's humoral immune response to salivary gland antigens was monitored by ELISA. Inflammatory cells infiltrating gland tissue were seen 3 months after immunization with salivary gland extract modified with pepsin (AgGp) and metaperiodate (AgGMp). Although pathological progression was not observed, the histopathological picture was similar to the initial phase of Sjögren's syndrome. In addition, a monoclonal antibody reactive with 3 gland polypeptides and anhydrase carbonic II was rescued among B cells from immunized mice. Thus, immunizations with modified autoantigens were able to initiate pathological damage to glandular tissue and stimulate the proliferation of auto-reactive B cells.
Infantile epileptic encephalopathy with hypsarrhythmia (infantile spasms/west syndrome) and immunity
Resumo:
West syndrome is a severe epilepsy, occurring in infancy, that comprises epileptic seizures known as spasms, in clusters, and a unique EEG pattern, hypsarrhythmia, with psychomotor regression. Maturation of the brain is a crucial component. The onset is within the first year of life, before 12 months of age. Patients are classified as cryptogenic (10 to 20%), when there are no known or diagnosed previous cerebral insults, and symptomatic (80 to 90%), when associated with pre-existing cerebral damages. The time interval from a brain insult to infantile spasms onset ranged from 6 weeks to 11 months. West syndrome has a time-limited natural evolutive course, usually disappearing by 3 or 4 years of age. In 62% of patients, there are transitions to another age-related epileptic encephalopathies, the Lennox-Gastaut Syndrome and severe epilepsy with multiple independent foci. Spontaneous remission and remission after viral infections may occur. Therapy with ACTH and corticosteroids are the most effective. Reports about intravenous immunoglobulins action deserve attention. There is also immune dysfunction, characterized mainly by anergy, impaired cell-mediated immunity, presence of immature thymocytes in peripheral blood, functional impairment of T lymphocytes induced by plasma inhibitory factors, and altered levels of immunoglobulins. Changes in B lymphocytes frequencies and increased levels of activated B cells have been reported. Sensitized lymphocytes to brain extract were also described. Infectious diseases are frequent and may, sometimes, cause fatal outcomes. Increase of pro-inflamatory cytokines in serum and cerebrospinal fluid of epileptic patients were reported. Association with specific HLA antigens was described by several authors (HLA-DR7, HLA-A7, HLA-DRw52, and HLA-DR5). Auto-antibodies to brain antigens, of several natures (N-methyl-d-aspartate glutamate receptor, gangliosides, brain tissue extract, synaptic membrane, and others), were described in epileptic patients and in epileptic syndromes. Experimental epilepsy studies with anti-brain antibodies demonstrated that epileptiform discharges can be obtained, producing hyperexcitability leading to epilepsy. We speculate that in genetically prone individuals, previous cerebral lesions may sensitize immune system and trigger an autoimmune disease. Antibody to brain antigens may be responsible for impairment of T cell function, due to plasma inhibitory effect and also cause epilepsy in immature brains. © 2008 Bentham Science Publishers Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: Protein-calorie malnutrition (PCM) is the most common type of malnutrition. PCM leads to immunodeficiency and consequent increased susceptibility to infectious agents. In addition, responses to prophylactic vaccines depend on nutritional status. This study aims to evaluate the ability of undernourished mice to mount an immune response to a genetic vaccine (pVAXhsp65) against tuberculosis, containing the gene coding for the heat shock protein 65 from mycobacteria. Methods: Young adult female BALB/c mice were fed ad libitum or with 80% of the amount of food consumed by a normal diet group. We initially characterized a mice model of dietary restriction by determining body and spleen weights, hematological parameters and histopathological changes in lymphoid organs. The ability of splenic cells to produce IFN-gamma and IL-4 upon in vitro stimulation with LPS or S. aureus and the serum titer of specific IgG1 and IgG2a anti-hsp65 antibodies after intramuscular immunization with pVAXhsp65 was then tested. Results: Dietary restriction significantly decreased body and spleen weights and also the total lymphocyte count in blood. This restriction also determined a striking atrophy in lymphoid organs as spleen, thymus and lymphoid tissue associated with the small intestine. Specific antibodies were not detected in mice submitted to dietary restriction whereas the well nourished animals produced significant levels of both, IgG1 and IgG2a anti-hsp65. Conclusion: 20% restriction in food intake deeply compromised humoral immunity induced by a genetic vaccine, alerting, therefore, for the relevance of the nutritional condition in vaccination programs based on these kinds of constructs. © 2009 Ishikawa et al; licensee BioMed Central Ltd.
Diferentes fontes proteicas em rações de leitões sobre atividade da tripsina e parâmetros sangüíneos
Resumo:
Were used 64 piglets submitted eight treatments: ration with skim milk (SM), three rations with crescent levels of swine plasma (SP), three rations with whole egg (WE) and a ration with high inclusion of soybean meal (SB). Were monitored the blood parameters (BP) in pigs at 27 and at 34 days of age. The piglets were slaugther at 28 and at 35 days of age, for collections pancreas and posterior mensurements of absolut (AW) and relative weigth (RW) of pancreas and trypsin activity (TA). Treatments not influencied AW and TA. Significant effect of the crescent levels was verified of SP, with lineal reduction of the leukocytes and increase of the globular volume, to the 27 days; while to the 34 days, lineal increase of the hematias was observed. At 27 days, animals feds rations with crescent levels of SP have inferior percentage of eosinophils than others that consumed crescent levels of WE. The utilization of SP promoted smaller stimulus to the immune reply, while the use of WE promoted larger humoral reply of the piglets.