759 resultados para image in cyberspace
Resumo:
Ultrasound elastography tracks tissue displacements under small levels of compression to obtain images of strain, a mechanical property useful in the detection and characterization of pathology. Due to the nature of ultrasound beamforming, only tissue displacements in the direction of beam propagation, referred to as 'axial', are measured to high quality, although an ability to measure other components of tissue displacement is desired to more fully characterize the mechanical behavior of tissue. Previous studies have used multiple one-dimensional (1D) angled axial displacements tracked from steered ultrasound beams to reconstruct improved quality trans-axial displacements within the scan plane ('lateral'). We show that two-dimensional (2D) displacement tracking is not possible with unmodified electronically-steered ultrasound data, and present a method of reshaping frames of steered ultrasound data to retain axial-lateral orthogonality, which permits 2D displacement tracking. Simulated and experimental ultrasound data are used to compare changes in image quality of lateral displacements reconstructed using 1D and 2D tracked steered axial and steered lateral data. Reconstructed lateral displacement image quality generally improves with the use of 2D displacement tracking at each steering angle, relative to axial tracking alone, particularly at high levels of compression. Due to the influence of tracking noise, unsteered lateral displacements exhibit greater accuracy than axial-based reconstructions at high levels of applied strain. © 2011 SPIE.
Resumo:
The Particle Image Velocimetry (PIV) technique is an image processing tool to obtain instantaneous velocity measurements during an experiment. The basic principle of PIV analysis is to divide the image into small patches and calculate the locations of the individual patches in consecutive images with the help of cross correlation functions. This paper focuses on the application of the PIV analysis in dynamic centrifuge tests on small scale tunnels in loose, dry sand. Digital images were captured during the application of the earthquake loading on tunnel models using a fast digital camera capable of taking digital images at 1000 frames per second at 1 Megapixel resolution. This paper discusses the effectiveness of the existing methods used to conduct PIV analyses on dynamic centrifuge tests. Results indicate that PIV analysis in dynamic testing requires special measures in order to obtain reasonable deformation data. Nevertheless, it was possible to obtain interesting mechanisms regarding the behaviour of the tunnels from PIV analyses. © 2010 Taylor & Francis Group, London.
Resumo:
Several research studies have been recently initiated to investigate the use of construction site images for automated infrastructure inspection, progress monitoring, etc. In these studies, it is always necessary to extract material regions (concrete or steel) from the images. Existing methods made use of material's special color/texture ranges for material information retrieval, but they do not sufficiently discuss how to find these appropriate color/texture ranges. As a result, users have to define appropriate ones by themselves, which is difficult for those who do not have enough image processing background. This paper presents a novel method of identifying concrete material regions using machine learning techniques. Under the method, each construction site image is first divided into regions through image segmentation. Then, the visual features of each region are calculated and classified with a pre-trained classifier. The output value determines whether the region is composed of concrete or not. The method was implemented using C++ and tested over hundreds of construction site images. The results were compared with the manual classification ones to indicate the method's validity.
Resumo:
Computational models of visual cortex, and in particular those based on sparse coding, have enjoyed much recent attention. Despite this currency, the question of how sparse or how over-complete a sparse representation should be, has gone without principled answer. Here, we use Bayesian model-selection methods to address these questions for a sparse-coding model based on a Student-t prior. Having validated our methods on toy data, we find that natural images are indeed best modelled by extremely sparse distributions; although for the Student-t prior, the associated optimal basis size is only modestly over-complete.
Resumo:
The goal of image restoration is to restore the original clear image from the existing blurred image without distortion as possible. A novel approach based on point location in high-dimensional space geometry method is proposed, which is quite different from the thought ways of existing traditional image restoration approaches. It is based on the high-dimensional space geometry method, which derives from the fact of the Principle of Homology-Continuity (PHC). Begin with the original blurred image, we get two further blurred images. Through the regressive deducing curve fitted by these three images, the first iterative deblured image could be obtained. This iterative "blurring-debluring-blurring" process is performed till reach the deblured image. Experiments have proved the availability of the proposed approach and achieved not only common image restoration but also blind image restoration which represents the majority of real problems.
Resumo:
We consider the effect of image forces, arising due to a difference in dielectric permeabilities of the well layer and barrier layers, on the energy spectrum of an electron confined in a rectangular potential well under a magnetic field. Depending on the value and the sign of the dielectric mismatch, image forces can localize electrons near the interfaces of the well or in well centre and change the direct intersubband gaps into indirect ones. These effects can be controlled by variation of the magnetic field, offering possibilities for exact tuning of electronic devices.
Resumo:
In order to realize the steady-state droplet evaporation, image feedback control system is designed based on DSP. The system has three main functions: to capture and store droplet images during the experiment; to calculate droplet geometrical and physical parameters such as volume, surface area, surface tension and evaporation velocity at a high-precision level; to keep the droplet volume constant. The DSP can drive an injection controller with the PID control to inject liquid so as to keep the droplet volume constant. The evaporation velocity of droplet can be calculated by measuring the injected volume during the evaporation. The structure of hardware and software of the control system, key processing methods such as contour fitting and experimental results are described.
Resumo:
利用反应显微谱仪对70keV He2+-He转移电离过程中的出射电子进行了成像,研究了出射电子的空间速度分布特征.结果表明:电子主要集中在散射平面内;在散射平面内,电子速度分布介于零与入射离子速度Vp之间(即前向出射)且在散射离子和靶核核间轴处有一极小值,呈现出典型的双峰结构.出射电子的上述分布特征可由出射电子波函数σ振幅和π振幅的干涉进行定性解释,σ振幅和π振幅对出射电子波函数的贡献与碰撞参数相关.在小碰撞参数下,π振幅的贡献更加明显;而在大碰撞参数下,σ振幅的贡献更加显著.