975 resultados para identification key
Resumo:
This paper examines the influence of the chemical constituents of activated sludge and extracted extracellular polymeric substances (EPS) on the surface properties, hydrophobicity, surface charge (SC) and flocculating ability (FA) of activated sludge floes. Activated sludge samples from 7 different full-scale wastewater treatment plants were examined. Protein and humic substances were found to be the dominant polymeric compounds in the activated sludges and the extracted EPS, and they significantly affected the FA and surface properties, hydrophobicity and SC, of the sludge floes. The polymeric compounds proteins, humic substances and carbohydrates in the sludge floes and the extracted EPS contributed to the negative SC, but correlated negatively to the hydrophobicity of sludge floes. The quantity of protein and carbohydrate within the sludge and the extracted EPS was correlated positively to the FA of the sludge floes, while increased amounts of humic substances resulted in lower FA. In contrast, increased amounts of total extracted EPS had a negative correlation to FA. The results reveal that the quality and quantity of the polymeric compounds within the sludge floes is more informative, with respect to understanding the mechanisms involved in flocculation, than if only the extracted EPS are considered. This is an important finding as it indicates that extracting EPS may be insufficient to characterise the EPS. This is due to the low extraction efficiency and difficulties involved in the separation of EPS from other organic compounds. Correlations were observed between the surface properties and FA of the sludge floes., This confirms that the surface properties of the, sludge flocs play an important role in the bioflocculation process but that also other interactions like polymer entanglement are important. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The utility of 16s rDNA restriction fragment length polymorphism (RFLP) analysis for the partial genomovar differentiation of Burkholderia cepacia complex bacterium is well documented. We compared the 16s rDNA RFLP signatures for a number of non-fermenting gram negative bacilli (NF GNB) LMG control strains and clinical isolates pertaining to the genera Burkholderia, Pseudomonas, Achromobacter (Alcaligenes), Ralstonia, Stenotrophomonas and Pandoraea. A collection of 24 control strain (LMG) and 25 clinical isolates were included in the study. Using conventional PCR, a 1.2 kbp 16s rDNA fragment was generated for each organism. Following restriction digestion and electrophoresis, each clinical isolate RFLP signature was compared to those of the control strain panel. Nineteen different RFLP signatures were detected from the 28 control strains included in the study. TwentyoneyTwenty- five of the clinical isolates could be classified by RFLP analysis into a single genus and species when compared to the patterns produced by the control strain panel. Four clinical B. pseudomallei isolates produced RFLP signatures which were indistinguishable from B. cepacia genomovars I, III and VIII. The identity of these four isolates were confirmed using B. pseudomallei specific PCR. 16s rDNA RFLP analysis can be a useful identification strategy when applied to NF GNB, particularly for those which exhibit colistin sulfate resistance. The use of this molecular based methodology has proved very useful in the setting of a CF referral laboratory particularly when utilised in conjunction with B. cepacia complex and genomovar specific PCR techniques. Species specific PCR or sequence analysis should be considered for selected isolates; especially where discrepancies between epidemiology, phenotypic and genotypic characteristics occur.
Resumo:
A barracuda implicated in ciguatera fish poisoning in Guadeloupe was estimated to have an overall flesh toxicity of 15 MUg/g using mouse bioassay. A lipid soluble extract was separated into two toxic fractions, FrA and FrB, on a LH20 Sephadex column eluted with dichloromethane/methanol (1:1). When intraperitoneal injected into mice, FrA provoked symptoms characteristic of slow-acting ciguatoxins, whereas FrB produced symptoms indicative of fast-acting toxins (FAT). High performance liquid chromatography/mass spectrometry/radio-ligand binding (HPLC/MS/RLB) analysis confirmed the two fractions were distinct, because only a weak overlap of some compounds was observed. HPLC/MS/RLB analysis revealed C-CTX-1 as the potent toxin present in FrA, and two coeluting active compounds at m/z 809.43 and 857.42 in FrB, all displaying the characteristic pattern of ion formation for hydroxy-polyethers. Other C-CTX congeners and putative hydroxy-polyether-like compounds were detected in both fractions, however, the RLB found them inactive. C-CTX-1 accounted for >90% of total toxicity in this barracuda and was confirmed to be a competitive inhibitor of brevetoxin binding to voltage-sensitive sodium channels (VSSCs) with a potency two-times lower than P-CTX-1. However, FAT active on VSSCs and
Resumo:
The light-evoked release of acetylcholine (ACh) affects the responses of many retinal ganglion cells, in part via nicotinic acetylcholine receptors (nAChRs). nAChRs that contain beta2alpha3 neuronal nicotinic acetylcholine receptors have been identified and localized in the rabbit retina; these nAChRs are recognized by the monoclonal antibody mAb210. We have examined the expression of beta2alpha3 nAChRs by glycinergic amacrine cells in the rabbit retina and have identified different subpopulations of nicotinic cholinoceptive glycinergic cells using double and triple immunohistochemistry with quantitative analysis. Here we demonstrate that about 70% of the cholinoceptive amacrine cells in rabbit retina are glycinergic cells. At least three nonoverlapping subpopulations of mAb210 glycine-immunoreactive cells can be distinguished with antibodies against calretinin, calbindin, and gamma-aminobutyric acid (GABA)(A) receptors. The cholinergic cells in rabbit retina are thought to synapse only on other cholinergic cells and ganglion cells. Thus, the expression of beta2alpha3 nAChRs on diverse populations of glycinergic cells is puzzling. To explore this finding, the subcellular localization of beta2alpha3 was studied at the electron microscopic level. mAb210 immunoreactivity was localized on the dendrites of amacrines and ganglion cells throughout the inner plexiform layer, and much of the labeling was not associated with recognizable synapses. Thus, our findings indicate that ACh in the mammalian retina may modulate glycinergic circuits via extrasynaptic beta2alpha3 nAChRs. (C) 2002 Wiley-Liss, Inc.
Resumo:
Pili of Neisseria meningitidis are a key virulence factor, being the major adhesin of this capsulate organism and contributing to specificity for the human host. Pili are post-translationally modified by addition of either an O-linked trisaccharide, Gal (beta1-4) Gal (alpha1-3) 2,4-diacetamido-2,4,6-trideoxyhexose or an O-linked disaccharide Gal (alpha1,3) GlcNAc. The role of these structures in meningococcal pathogenesis has not been resolved. In previous studies we identified two separate genetic loci, pglA and pglBCD, involved in pilin glycosylation. Putative functions have been allocated to these genes; however, there are not enough genes to account for the complete biosynthesis of the described structures, suggesting additional genes remain to be identified. In addition, it is not known why some strains express the trisaccharide structure and some the disaccharide structure. In order to find additional genes involved in the biosynthesis. of these structures, we used the recently published group A strain Z2491 and group B strain MC58 Neisseria meningitidis genomes and the unfinished Neisseria meningitidis group C strain FAM18 and Neisseria gonorrhoeae strain FA1090 genomes to identify novel genes involved in pilin glycosylation, based on homology to known oligosaccharide biosynthetic genes. We identified a new gene involved in pilin glycosylation designated pglE and examined four additional genes pgIB/B2, pglF, pglG and pglH. A strain survey revealed that pglE and pglF were present in each strain examined. The pglG, pglH and pgIB2 polymorphisms were not found in strain C311#3 but were present in a large number of clinical isolates. Insertional mutations were constructed in pglE and pglF in N. meningitidis strain C311#3, a strain with well-defined lipopolysaccharide (LPS) and pilin-linked glycan structures. Increased gel migration of the pilin subunit molecules of pglE and pglF mutants was observed by Western analysis, indicating truncation of the trisaccharide structure. Antisera specific for the C311#3 trisaccharide failed to react with pilin from these pglE and pglF mutants. GC-MS analysis of the sugar composition of the pglE mutant showed a reduction in galactose compared with C311#3 wild type. Analysis of amino acid sequence homologies has suggested specific roles for pglE and pglF in the biosynthesis of the trisaccharide structure. Further, we present evidence that pglE, which contains heptanucleotide repeats, is responsible for the phase variation between trisaccharide and disaccharide structures in strain C311#3 and other strains. We also present evidence that pglG, pglH and pgIB2 are potentially phase variable.
Resumo:
Pili of pathogenic Neisseria are major virulence factors associated with adhesion, cytotoxicity, twitching motility, autoaggregation, and DNA transformation. Pili are modified posttranslationally by the addition of phosphorylcholine. However, no genes involved in either the biosynthesis or the transfer of phosphorylcholine in Neisseria meningitidis have been identified. In this study, we identified five candidate open reading frames (ORFs) potentially involved in the biosynthesis or transfer of phosphorylcholine to pilin in N. meningitidis. Insertional mutants were constructed for each ORF in N. meningitidis strain C311#3 to determine their effect on phosphorylcholine expression. The effect of the mutant ORFs on the modification by phosphorylcholine was analyzed by Western analysis with phosphorylcholine-specific monoclonal antibody TEPC-15. Analysis of the mutants showed that ORF NMB0415, now defined as pptA (pilin phosphorylcholine transferase A), is involved in the addition of phosphorylcholine to pilin in N. meningitidis. Additionally, the phase variation (high frequency on-off switching of expression) of phosphorylcholine on pilin is due to changes in a homopolymeric guanosine tract in pptA.
Resumo:
Functional knowledge of the physiological basis of crop adaptation to stress is a prerequisite for exploiting specific adaptation to stress environments in breeding programs. This paper presents an analysis of yield components for pearl millet, to explain the specific adaptation of local landraces to stress environments in Rajasthan, India. Six genotypes, ranging from high-tillering traditional landraces to low-tillering open-pollinated modern cultivars, were grown in 20 experiments, covering a range of nonstress and drought stress patterns. In each experiment, yield components (particle number, grain number, 100 grain mass) were measured separately for main shoots, basal tillers, and nodal tillers. Under optimum conditions, landraces had a significantly lower grain yield than the cultivars, but no significant differences were observed at yield levels around 1 ton ha(-1). This genotype x environment interaction for grain yield was due to a difference in yield strategy, where landraces aimed at minimising the risk of a crop failure under stress conditions, and modem cultivars aimed at maximising yield potential under optimum conditions. A key aspect of the adaptation of landraces was the small size of the main shoot panicle, as it minimised (1) the loss of productive tillers during stem elongation; (2) the delay in anthesis if mid-season drought occurs; and (3) the reduction in panicle productivity of the basal tillers under stress. In addition, a low investment in structural panicle weight, relative to vegetative crop growth rate, promoted the production of nodal tillers, providing a mechanism to compensate for reduced basal tiller productivity if stress occurred around anthesis. A low maximum 100 grain mass also ensured individual grain mass was little affected by environmental conditions. The strategy of the high-tillering landraces carries a yield penalty under optimum conditions, but is expected to minimise the risk of a crop failure, particularly if mid-season drought stress occurs. The yield architecture of low-tillering varieties, by contrast, will be suited to end-of-season drought stress, provided anthesis is early. Application of the above adaptation mechanisms into a breeding program could enable the identification of plant types that match the prevalent stress patterns in the target environments. (C) 2003 E.J. van Oosterom. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Atualmente é difícil reconhecer a identidade de muitas espécies neotropicais de Pseudisobrachium Kieffer, 1904, principalmente por que as descrições e ilustrações disponíveis não são suficientes para permitir identificações precisas. Para resolver este problema, foram examinadas 115 espécies válidas, além de seus sinônimos juniores. Foram realizados doze atos nomenclaturais, e reconhecidas 110 espécies válidas para a região Neotropical. Foram designados dois lectótipos: Pristocera crassicornis Westwood and Pristocera haemorrhoidalis Westwood. Foram propostas sete sinonímias novas para espécies: Pseudisobrachium retusum Evans syn. nov. de P. pauxillum Evans; P. cunco Perez syn. nov. de P. erythrocephalum Evans; P. navajo Evans, P. rectangulatum Evans, P. emarginatum Evans e P. foutsi Evans syn. nov. de P. flavinervis Fouts; P. acuminatum Waichert & Azevedo syn. nov. de P. latum Waichert & Azevedo. Foi proposta a seguinte sinonímia nova para gênero: Parisobrachium Kieffer syn. nov. de Dissomphalus Ashmead. Foi estabelecida a seguinte combinação nova e revalidado o nome: Dissomphalus albipes (Kieffer) comb. nov. e nom. rev. de Pseudisobrachium paraguayense Kieffer.
Resumo:
Sistemática, morfologia e biogeografia
Resumo:
Within the development of motor vehicles, crash safety (e.g. occupant protection, pedestrian protection, low speed damageability), is one of the most important attributes. In order to be able to fulfill the increased requirements in the framework of shorter cycle times and rising pressure to reduce costs, car manufacturers keep intensifying the use of virtual development tools such as those in the domain of Computer Aided Engineering (CAE). For crash simulations, the explicit finite element method (FEM) is applied. The accuracy of the simulation process is highly dependent on the accuracy of the simulation model, including the midplane mesh. One of the roughest approximations typically made is the actual part thickness which, in reality, can vary locally. However, almost always a constant thickness value is defined throughout the entire part due to complexity reasons. On the other hand, for precise fracture analysis within FEM, the correct thickness consideration is one key enabler. Thus, availability of per element thickness information, which does not exist explicitly in the FEM model, can significantly contribute to an improved crash simulation quality, especially regarding fracture prediction. Even though the thickness is not explicitly available from the FEM model, it can be inferred from the original CAD geometric model through geometric calculations. This paper proposes and compares two thickness estimation algorithms based on ray tracing and nearest neighbour 3D range searches. A systematic quantitative analysis of the accuracy of both algorithms is presented, as well as a thorough identification of particular geometric arrangements under which their accuracy can be compared. These results enable the identification of each technique’s weaknesses and hint towards a new, integrated, approach to the problem that linearly combines the estimates produced by each algorithm.
Resumo:
This paper reports on the development of specific slicing techniques for functional programs and their use for the identification of possible coherent components from monolithic code. An associated tool is also introduced. This piece of research is part of a broader project on program understanding and re-engineering of legacy code supported by formal methods
Resumo:
The genus Heliconia is not much studied and the number of existing species in this genus is still uncertain. It is known that this number relies between 150 to 250 species. In Brazil, about 40 species are native and known by many different names. The objective of this paper was to characterize morphometrically and to identify the NOR (active nucleolus organizer regions) by Ag-NOR banding of chromosomes of Heliconia bihai (L) L. Root meristems were submitted to blocking treatment in an amiprofos-methyl (APM) solution, fixed in methanol-acetic acid solution for 24 hours, at least. The meristems were washed in distilled water and submitted to enzymatic digestion with pectinase enzyme. The slides were prepared by dissociation of the root meristem, dried in the air and also on hot plate at 50°C. Subsequently, some slides were submitted to 5% Giemsa stain for karyotype construction and to a solution of silver nitrate (AgNO3) 50% for Ag-NOR banding. The species H. bihai has 2n = 22 chromosomes, 4 pairs of submetacentric chromosomes and 7 pairs of metacentric chromosomes, and graded medium to short (3.96 to 0.67 μM), with the presence of active NOR in pairs 1 and 2 and interphase cells with 2 nucleoli. These are the features of a diploid species.
Resumo:
Polyembryonic seeds are characterized by the development of over one embryo in the same seed, which can be zygotic and nucellar. The objective of this work was to identify the genetic origin, whether zygotic or nucellar, of seedlings of polyembryonic seeds of 'Ubá' mango tree using ISSR markers, and relating them with the vigor of the seedlings. Thus, mangos were harvested in Visconde do Rio Branco (accession 102) and Ubá (accessions 112, 138, 152 and 159), whose seeds were germinated in plastic trays filled with washed sand. Fifty days after sowing, seedlings from five seeds of each one of the accessions 102, 112, 138, 159 and from 10 seeds of the accession 152, were analyzed. These sseedlings were characterized and evaluated for plant height, stem circumference and mass of fresh aerial part and the most vigorous seedling was the one displaying at least two of these traits higher than the other seedlings from seed. Leaves were collected for genomic DNA extraction, which was amplified using seven ISSR primers previously selected based on the amplification profile and considering the number and resolution of fragments. Zygotic seedlings were found in 18 seeds, which were the most vigorous in six seeds. The results evidenced the existence of genetic variability in orchards using seedlings grown from seeds, because the farmer usually uses the most vigorous ones, assuming that this is of nucellar origin. These results also indicate that the most vigorous seedling are not always nucellar, inasmuch as of 20% of the total seeds evaluated, the zygotic seedling was the most vigorous.