931 resultados para hyperbranched polymers, ferrocene, block copolymers


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aromatic and aliphatic diacid chlorides were used to condense naturally occurring diamino acids and their esterified derivatives. It was anticipated the resulting functional polyamides would biodegrade to physiologically acceptable compounds and show pH dependant solubility could be used for biomedical applications ranging from enteric coatings to hydrosoluble drug delivery vehicles capable of targeting areas of low physiological pH. With these applications in mind the polymers were characterised by infra red spectroscopy, gel permeation chromatography and in the case of aqueous soluble polymers by potentiometric titration. Thin films of poly (lysine ethyl ester isophthalamide) plasticised with poly (caprolactone) were cast from DMSO/chloroform solutions and their mechanical properties measured on a Hounsfield Hti tensiometer. Interfacial synthesis was investigated as a synthetic route for the production of linear functional polyamides. High molecular weight polymer was obtained only when esterified diamino acids were condensed with aromatic diacid chlorides. The method was unsuitable for the production of copolymers of free and esterified amino acids with a diacid chloride. A novel miscible mixed solvent single phase reaction was investigated for production of copolymers of esterified and non-esterified amino acids with diacid chlorides. Aliphatic diacid chlorides were unsuitable for condensing diamino acids using this technique because of high rates of hydrolysis. The technique gave high molecular weight homopolymers from esterified diamino acids and aromatic diacid chlorides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fundamental if poorly understood problem that hydrogels display is the tendency of these contact lens materials to dehydrate, causing certain complications of the corneal epithelium. However, recent studies have indicated that the evaporation rate of water from different hydrogel lenses is the same and the severity of conditions such as corneal staining is controlled by the states of water in the material. A study was therefore undertaken which concluded that increased corneal desiccating staining occurred as the proportion of water existing in the bound state decreased. The possibility of using dehydrated hydrogels as packaging materials with desiccating properties has also been investigated. As hydrogels have a high affinity for water they have adequate ability to function as a moisture scavenger in an enclosed atmosphere. It was concluded that this ability is maximised by a high total water content and an increase in the proportion of this water existing in the bound state for the material when it is fully hydrated. N-vinyl pyrrolidone has a low reactivity in vinyl polymerisation reactions which results in polymers with local domains of the same chemical type which can lead to deposition. As contact lenses comprising of this monomer are susceptible to deposition, a monomer with a higher reactivity in vinyl polymerisations is acryloylmorpholine and its incorporation in favour of NVP is encouraged. Unfortunately a large proportion of high EWC hydrogels are mechanically weak and attempts to increase this property by increasing hydrophobicity or cross-linking results in a decrease in EWC. Monomers with the potential to carry a positive charge were incorporated into a high EWC, AMO-HEMA copolymer and the physical properties were investigated. Although EWC increased, mechanical properties decreased only slightly. Therefore simultaneous incorporation of a positively charged monomer and a negatively charged monomer was investigated. The resulting copolymers showed increased water content and increased initial modulus. A technique for measuring the coefficient of friction of contact lenses during lubrication has been developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main objectives of this study was to functionalise various rubbers (i.e. ethylene propylene copolymer (EP), ethylene propylene diene terpolymer (EPDM), and natural rubber (NR)) using functional monomers, maleic anhydride (MA) and glycidyl methacrylate (GMA), via reactive processing routes. The functionalisation of the rubber was carried out via different reactive processing methods in an internal mixer. GMA was free-radically grafted onto EP and EPDM in the melt state in the absence and presence of a comonomer, trimethylolpropane triacrylate (TRlS). To optinuse the grafting conditions and the compositions, the effects of various paranleters on the grafting yields and the extent of side reactions were investigated. Precipitation method and Soxhlet extraction method was established to purifY the GMA modified rubbers and the grafting degree was determined by FTIR and titration. It was found that without TRlS the grafting degree of GMA increased with increasing peroxide concentration. However, grafting was low and the homopolymerisation of GMA and crosslinking of the polymers were identified as the main side reactions competing with the desired grafting reaction for EP and EPDM, respectively. The use of the tri-functional comonomer, TRlS, was shown to greatly enhance the GMA grafting and reduce the side reactions in terms of the higher GMA grafting degree, less alteration of the rheological properties of the polymer substrates and very little formation of polyGMA. The grafting mechanisms were investigated. MA was grafted onto NR using both thermal initiation and peroxide initiation. The results showed clearly that the reaction of MA with NR could be thermally initiated above 140°C in the absence of peroxide. At a preferable temperature of 200°C, the grafting degree was increased with increasing MA concentration. The grafting reaction could also be initiated with peroxide. It was found that 2,5-dimethyl-2,5-bis(ter-butylproxy) hexane (TIOI) was a suitable peroxide to initiate the reaction efficiently above I50°C. The second objective of the work was to utilize the functionalised rubbers in a second step to achieve an in-situ compatibilisation of blends based on poly(ethylene terephthalate) (PET), in particular, with GMA-grafted-EP and -EPDM and the reactive blending was carried out in an internal mixer. The effects of GMA grafting degree, viscosities of GMAgrafted- EP and -EPDM and the presence of polyGMA in the rubber samples on the compatibilisation of PET blends in terms of morphology, dynamical mechanical properties and tensile properties were investigated. It was found that the GMA modified rubbers were very efficient in compatibilising the PET blends and this was supported by the much finer morphology and the better tensile properties. The evidence obtained from the analysis of the PET blends strongly supports the existence of the copolymers through the interfacial reactions between the grafted epoxy group in the GMA modified rubber and the terminal groups of PET in the blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alkyl aluminium alkoxides have been used as initiators for the ring opening polymerisation of ε-caprolactone and δ-valerolactone. The effect of the reaction solvent on the kinetics of the polymerisation of ε-caprolactone has been studied. The rate of polymerisation was found to be faster in solvents of lower polarity and donor nature such as toluene. In general solvents of higher polarity resulted in a decreased rate of polymerisation. However solvents such as THF or DMF with a lone pair of electrons capable of forming a complex with the aluminium centre slowed the polymerisation further. The size of the monomer also proved to be an important factor in the kinetics of the reaction. The six membered ring, δ-valerolactone has less ring strain than the seven membered ring ε-caprolactone and thus the polymerisation of δ-valerolactone is slower than the corresponding polymerisation of ε-caprolactone. Both the alkoxide and alkyl group structures have an effect on the polymerisation. In general bulkier alkoxide groups provide greater steric hindrance around the active site at the beginning of the reaction. This causes an induction or a build up period that is related to the both the steric hindrance and also the electronic effects provided by the alkoxide group. The alkyl group structure has an effect throughout the polymerisation because it remains adjacent to the active centre. The number of alkoxide groups on the aluminium centre is also important, using a dialkoxide as an initiator yields polymers with molecular weights approximately half that of the corresponding reactions using a mono alkoxide. Transesterification reactions have also been found to occur after most of the monomer has been consumed. These transesterification reactions are exaggerated as temperature increases. A method of producing tri-block co-polymers has also been developed. A di-hydroxy functional pre-polymer, PHBV, was reacted with an aluminium alkyl to form a di-alkoxide macroinitiator which was subsequently used as an initiator for the polymerisation of ε-caprolactone to form an ABA type tri-block co-polymer. The molecular weight and other properties were predictable from the initial monomer/initiator ratios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of ester plasticizers and copolymers on the mechanical properties of the natural biodegradable polymers, poly(3-hydroxybutyrate) [PHB] and poly(lactic acid) [PLA] have been studied after subjecting to melt processing conditions. Ester plasticizers were synthesized from citric, tartaric and maleic acids using various alcohols. A variety of PLA copolymers have also been prepared from poly(ethylene glycol) derivatives using stannous octanoate catalysed ring opening polymerisations of DL-lactide. A novel PLA star copolymer was also prepared from an ethoxylated pentaerythritol. The structures of these copolymers were determined by NMR spectroscopy. The plasticizing effect of the synthesised additives at various concentrations was determined. While certain additives were capable of improving the mechanical properties of PLA, none were effective in PHB. Moreover, it was found that certain combinations of additives exhibited synergistic effects. Possible mechanisms are discussed. Biotic and abiotic degradation studies showed that the plasticizers (esters and copolymers) did not inhibit the biodegradability of PHB or PLA in compost at 60°C. Simple toxicity tests carried out on compost extract and its ability to support the growth of cress seeds was established. PLA was found to be susceptible to limited thermal degradation under melt processing conditions. Conventional phenolic antioxidants showed no significant effect on this process, suggesting that degradation was not predominantly a free radical process. PLA also underwent photo-oxidative degradation with UV light and the process could be accelerated in the presence of a photoactivator such as iron (III) diisononyl dithiocarbamate. The mechanisms for the above processes are discussed. Finally, selected compounds were prepared on a pilot plant scale. Extruded and blown films were prepared containing these additives with conventional polymer processing equipment. The mechanical properties were similar to those obtained with laboratory produced compression moulded films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interpenetrating polymer networks (lPN's), have been defined as a combination of two polymers each in network form, at least one of which has been synthesised and / or crosslinked in the presence of the other. A semi-lPN, is formed when only one of the polymers in the system is crosslinked, the other being linear. lPN's have potential advantages over homogeneous materials presently used in biomedical applications, in that their composite nature gives them a useful combination of properties. Such materials have potential uses in the biomedical field, specifically for use in hard tissue replacements, rigid gas permeable contact lenses and dental materials. Work on simply two or three component systems in both low water containing lPN's supplemented by the study of hydrogels (water swollen hydrophilic polymers) can provide information useful in the future development of more complex systems. A range of copolymers have been synthesised using a variety of methacrylates and acrylates. Hydrogels were obtained by the addition of N-vinyl pyrrolidone to these copolymers. A selection of interpenetrants were incorporated into the samples and their effect on the copolymer properties was investigated. By studying glass transition temperatures, mechanical, surface, water binding and oxygen permeability properties samples were assessed for their suitability for use as biomaterials. In addition copolymers containing tris-(trimethylsiloxy)-y-methacryloxypropyl silane, commonly abbreviated to 'TRlS', have been investigated. This material has been shown to enhance oxygen permeability, a desirable property when considering the design of contact lenses. However, 'TRIS' has a low polar component of surface free energy and hence low wettability. Copolymerisation with a range of methacrylates has shown that significant increases in surface wettability can be obtained without a detrimental effect on oxygen permeability. To further enhance to surface wettability 4-methacryloxyethyl trimellitic anhydride was incorporated into a range of promising samples. This study has shown that by careful choice of monomers it is possible to synthesise polymers that possess a range of properties desirable in biomedical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to use the transformation of anionic to metathesis polymerization to produce block co-polymers of styrene-b-pentenylene using WC16 /PStLi and WC16/PStLi/ AlEtC12 catalyst systems. Analysis of the products using SEC and 1H and 13C NMR spectroscopy enabled mechanisms for metathesis initiation reactions to be proposed. The initial work involved preparation of the constituent homo-polymers. Solutions of polystyryllithium in cyclohexane were prepared and diluted so that the [PStLi]o<2x10-3M. The dilution produced initial rapid decay of the active species, followed by slower spontaneous decay within a period of days. This was investigated using UV / visible spectrophotometry and the wavelength of maximum absorbance of the PStLi was found to change with the decay from an initial value of 328mn. to λmax of approximately 340nm. after 4-7 days. SEC analysis of solutions of polystyrene, using RI and UV / visible (set at 254nm.) detectors; showed the UV:RI peak area was constant for a range of polystyrene samples of different moleculor weight. Samples of polypentenylene were prepared and analysed using SEC. Unexpectedly the solutions showed an absorbance at 254nm. which had to be considered when this technique was used subsequently to analyse polymer samples to determine their styrene/ pentenylene co-polymer composition. Cyclohexane was found to be a poor solvent for these ring-opening metathesis polymerizations of cyclopentene. Attempts to produce styrene-b-pentenylene block co-polymers, using a range of co-catalyst systems, were generally unsuccessful as the products were shown to be mainly homopolymers. The character of the polymers did suggest that several catalytic species are present in these systems and mechanisms have been suggested for the formation of initiating carbenes. Evidence of some low molecular weight product with co-polymer character has been obtained. Further investigation indicated that this is most likely to be ABA block copolymer, which led to a mechanism being proposed for the termination of the polymerization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogels may be conveniently described as hydrophilic polymers that are swollen by, but do not dissolve in water. In this work a series of copolymer hydrogels and semi-interpenetrating polymer networks based on the monomers 2-hydroxyethyl methacrylate, N-vinyl pyrrolidone and N'N' dimethyl acrylamide, together with some less hydrophilic hydroxyalkyl acrylates and methacrylates have been synthesised. Variations in structure and composition have been correlated both with the total equilibrium water content of the resultant hydrogel and with the more detailed water binding behaviour, as revealed by differential scanning calorimetry studies. The water binding characteristics of the hydrogels were found to be primarily a function of the water structuring groups present in gel. The water binding abilities of these groups were, however, modified by steric effects. The mechanical properties of the hydrogels were also investigated. These were found to be dependent on both the polymer composition and the amount and nature of the water present in the gels. In biological systems, composite formation provides a means of producing strong, high water content materials. As an analogy with these systems hydrogel composites were prepared. In an initial study of these materials the water binding and mechanical properties of semi-interpenetrating polymer networks of N'N'dimethyl acrylamide with cellulosic type materials, with polyurethanes and with ester containing polymers were examined. A preliminary investigation of surface properties of both the copolymers and semi-interpenetrating polymer networks has been completed, using both contact angle measurements and anchorage dependent fibroblast cells. Measurable differences in surface properties attributable to structural variations in the polymers were detected by droplet techniques in the dehydrated state. However, in the hydrated state these differences were masked by the water in the gels. The use of cells enabled the underlying differences to be probed and the nature of the water structuring group was again found to be the dominant factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microencapsulation processes, based upon the concept of solvent evaporation, have been employed within these studies to prepare microparticles from poly--hydroxybutyrate homopolymers and copolymers thereof with 3-hydroxyvalerate [P(HB-HV) polymers]. Variations in the preparative technique have facilitated the manufacture of two structurally distinct forms of microparticle. Thus, monolithic microspheres and reservoir-type microcapsules have been respectively fabricated by single and double emulsion-solvent evaporation processes. The objective of the studies reported in chapter three is to asses how a range of preparative variables affect the yield, shape and surface morphology of P(HB-HV) microcapsules. The following chapter then describes how microcapsule morphology in general, and microcapsule porosity in particular, can be regulated by blending the fabricating P(HB-HV) polymer with poly--caprolactone [PCL]. One revelation of these studies is the ability to generate uniformly microporous microcapsules from blends of various high molecular weight P(HB-HV) polymers with a low molecular weight form of PCL. These microcapsules are of particular interest because they may have the potential to facilitate the release of an encapsulated macromolecule via an aqueous diffusion mechanism which is not reliant on polymer degradation. In order to investigate this possibility, one such formulation is used in chapter five to encapsulate a wide range of different macromolecules, whose in vitro release behaviour is subsequently evaluated. The studies reported in chapter six centre on the preparation and characterization of hydrocortisone-loaded microspheres, prepared from a range of P(HB-HV) polymers, using a single emulsion-solvent evaporation process. In this chapter, the influence of the organic phase viscosity on the efficiency of drug encapsulation is the focus of initial investigations. Thereafter, it is shown how the strategies previously adopted for the regulation of microcapsule morphology can also be applied to single emulsion systems, with profound implications for the rate of drug release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The melt stabilising efficiency of antioxidants with different structures based on hindered phenols, phosphite esters, phosphonite and a lactone was examined during multi-pass extrusions at 265 °C in three metallocene ethylene-1-octene copolymers (m-LLDPE) having different extent of short chain branching (SCB) and one Zeigler copolymer (z-LLDPE) containing the same level of SCB corresponding to one of the m-LLDPE polymers. The effect of the different antioxidants, when used separately and in combination, was investigated by characterising the changes in the polymer's rheological behaviour, colour formation and structural changes based on unsaturated groups and carbonyl content during five multi-pass extrusions. The results showed that all stabilisation systems examined offered higher efficiency in the metallocene polymers compared to the Zeigler. The effect of the extent of SCB in the metallocene polymers on the stabilising efficacy of the antioxidant systems was also examined, and it was shown that it had a significant effect, with both single and combinations of antioxidants giving higher efficiency in the m-LLDPE polymer containing higher extent of SCB. The presence of the lactone HP136 in mixtures containing hindered phenol–phosphite antioxidant systems gave a higher melt stabilisation efficiency than in its absence and this has been attributed to a co-operative antioxidant reaction steps that take place between the antioxidants resulting in the possible regeneration of the lactone antioxidant through a redox reaction. In all the metallocene PE polymers examined, the biologically hindered phenol, Irganox E, was shown to be more effective than the conventionally hindered phenol Irganox 1076, when examined alone or in combination with phosphite esters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the comonomer content in a series of metallocene-based ethylene-1-octene copolymers (m-LLDPE) on thermo-mechanical, rheological, and thermo-oxidative behaviours during melt processing were examined using a range of characterisation techniques. The amount of branching was calculated from 13C NMR and studies using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were employed to determine the effect of short chain branching (SCB, comonomer content) on thermal and mechanical characteristics of the polymer. The effect of melt processing at different temperatures on the thermo-oxidative behaviour of the polymers was investigated by examining the changes in rheological properties, using both melt flow and capillary rheometry, and the evolution of oxidation products during processing using infrared spectroscopy. The results show that the comonomer content and catalyst type greatly affect thermal, mechanical and oxidative behaviour of the polymers. For the metallocene polymer series, it was shown from both DSC and DMA that (i) crystallinity and melting temperatures decreased linearly with comonomer content, (ii) the intensity of the ß-transition increased, and (iii) the position of the tan δmax peak corresponding to the a-transition shifted to lower temperatures, with higher comonomer content. In contrast, a corresponding Ziegler polymer containing the same level of SCB as in one of the m-LLDPE polymers, showed different characteristics due to its more heterogeneous nature: higher elongational viscosity, and a double melting peak with broader intensity that occurred at higher temperature (from DSC endotherm) indicating a much broader short chain branch distribution. The thermo-oxidative behaviour of the polymers after melt processing was similarly influenced by the comonomer content. Rheological characteristics and changes in concentrations of carbonyl and the different unsaturated groups, particularly vinyl, vinylidene and trans-vinylene, during processing of m-LLDPE polymers, showed that polymers with lower levels of SCB gave rise to predominantly crosslinking reactions at all processing temperatures. By contrast, chain scission reactions at higher processing temperatures became more favoured in the higher comonomer-containing polymers. Compared to its metallocene analogue, the Ziegler polymer showed a much higher degree of crosslinking at all temperatures because of the high levels of vinyl unsaturation initially present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progress in the development of generic molecular devices based on responsive polymers is discussed. Characterisation of specially synthesised polyelectrolyte gels, "grafted from" brushes and triblock copolymers is reported. A Landolt pH-oscillator, based on bromate/ sulfite/ferrocyanide, with a room temperature period of 20 min and a range of 3.1 block copolymers, based on hydrophobic end-blocks and either polyacid or polybase mid-block, have been used to produce polymer gels where the deformation of the molecules can be followed directly by SAXS and a correlation between molecular shape change and macroscopic deformation has been established. The three systems studied allow both the macroscopic and a molecular response to be investigated independently for the crosslinked gels and the brushes. The triblock copolymers demonstrate that the individual response of the polyelectrolyte molecules scale-up to give the macroscopic response of the system in an oscillating chemical reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fullerene end-capped polymer-compatibilizer based on poly(3-hexylthiophene) (P3HT) was synthesized and demonstrated to have a remarkable effect on both the stability and efficiency of devices made from exemplar P3HT and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). P3HT with ethynyl chain-ends and α-azido-ω-bromo-PS were prepared via Grignard metathesis (GRIM) and atom transfer radical polymerisation, respectively. “Click” chemistry resulted in the preparation of poly(3-hexylthiophene)-block-ω-bromo-polystyrene (P3HT-b-PS-Br), and subsequent atom transfer radical addition chemistry with fullerene (C60) yielded the donor–acceptor block copolymer P3HT-b-PS-C60. Both P3HT-b-PS-Br and P3HT-b-PS-C60 were considered as compatibilizers with P3HT/PCBM blends, with the study detailing effects on active-layer morphology, device efficiency and stability. When used at low concentrations, both P3HT-b-PS-Br (1%) and P3HT-b-PS-C60 (0.5%) resulted in considerable 28% and 35% increases in efficiencies with respect to devices made from P3HT/PCBM alone. Furthermore, P3HT-b-PS-C60 (0.5%) resulted in an important improvement in device stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microwave annealing is an emerging technique for achieving ordered patterns of block copolymer films on substrates. Little is understood about the mechanisms of microphase separation during the microwave annealing process and how it promotes the microphase separation of the blocks. Here, we use controlled power microwave irradiation in the presence of tetrahydrofuran (THF) solvent, to achieve lateral microphase separation in high- lamellar-forming poly(styrene-b-lactic acid) PS-b-PLA. A highly ordered line pattern was formed within seconds on silicon, germanium and silicon on insulator (SOI) substrates. In-situ temperature measurement of the silicon substrate coupled to condition changes during "solvo-microwave" annealing allowed understanding of the processes to be attained. Our results suggest that the substrate has little effect on the ordering process and is essentially microwave transparent but rather, it is direct heating of the polar THF molecules that causes microphase separation. It is postulated that the rapid interaction of THF with microwaves and the resultant temperature increase to 55 degrees C within seconds causes an increase of the vapor pressure of the solvent from 19.8 to 70 kPa. This enriched vapor environment increases the plasticity of both PS and PLA chains and leads to the fast self-assembly kinetics. Comparing the patterns formed on silicon, germanium and silicon on insulator (SOI) and also an in situ temperature measurement of silicon in the oven confirms the significance of the solvent over the role of substrate heating during "solvo-microwave" annealing. Besides the short annealing time which has technological importance, the coherence length is on a micron scale and dewetting is not observed after annealing. The etched pattern (PLA was removed by an Ar/O-2 reactive ion etch) was transferred to the underlying silicon substrate fabricating sub-20 nm silicon nanowires over large areas demonstrating that the morphology is consistent both across and through the film.