993 resultados para hydrogen compounds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen stratification and atmosphere mixing is a very important phenomenon in nuclear reactor containments when severe accidents are studied and simulated. Hydrogen generation, distribution and accumulation in certain parts of containment may pose a great risk to pressure increase induced by hydrogen combustion, and thus, challenge the integrity of NPP containment. The accurate prediction of hydrogen distribution is important with respect to the safety design of a NPP. Modelling methods typically used for containment analyses include both lumped parameter and field codes. The lumped parameter method is universally used in the containment codes, because its versatility, flexibility and simplicity. The lumped parameter method allows fast, full-scale simulations, where different containment geometries with relevant engineering safety features can be modelled. Lumped parameter gas stratification and mixing modelling methods are presented and discussed in this master’s thesis. Experimental research is widely used in containment analyses. The HM-2 experiment related to hydrogen stratification and mixing conducted at the THAI facility in Germany is calculated with the APROS lump parameter containment package and the APROS 6-equation thermal hydraulic model. The main purpose was to study, whether the convection term included in the momentum conservation equation of the 6-equation modelling gives some remarkable advantages compared to the simplified lumped parameter approach. Finally, a simple containment test case (high steam release to a narrow steam generator room inside a large dry containment) was calculated with both APROS models. In this case, the aim was to determine the extreme containment conditions, where the effect of convection term was supposed to be possibly high. Calculation results showed that both the APROS containment and the 6-equation model could model the hydrogen stratification in the THAI test well, if the vertical nodalisation was dense enough. However, in more complicated cases, the numerical diffusion may distort the results. Calculation of light gas stratification could be probably improved by applying the second order discretisation scheme for the modelling of gas flows. If the gas flows are relatively high, the convection term of the momentum equation is necessary to model the pressure differences between the adjacent nodes reasonably.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study has aimed to develop a method for simultaneous extraction and determination by liquid chromatography and mass spectrometry (LC-MS/MS) of glyphosate, aminomethylphosphonic acid (AMPA), shikimic acid, quinic acid, phenylalanine, tyrosine and tryptophan. For the joint analysis of these compounds the best conditions of ionization in mass spectrometry and for chromatographic separation of the compounds were selected. Calibration curves and linearity ranges were also determined for each compound. Different extraction systems of the compounds were tested from plant tissues collected from sugarcane (Saccharum officinarum) and eucalyptus (Eucalyptus urophylla platiphylla) plants two days after the glyphosate application at the dose of 720 g a.e. ha-1. The plant material was dried in a forced air circulation drying oven and in a lyophilizer, and subsequently the extractions with acidified water (pH 2.5), acetonitrile-water (50:50) [v/v] and methanol-water (50:50) [v/v] were tested. To verify the recovery of the compounds in the plant matrix with acidified water as an extracting solution, the samples were fortified with a solution containing the mixture of the different analytical standards present so that this one presented the same levels of 50 and 100 μg L-1 of each compound. All experiments were conducted with three replicates. The analytical method developed was efficient for compounds quantifications. The extraction from the samples dried in an oven and using acidified water allowed better extraction levels for all compounds. The recovery levels of the compounds in the fortified samples with known amounts of each compound for both plants samples were rather satisfactory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Atlantic Forest on the slopes of Serra do Mar around Cubatão (São Paulo, Brazil) has been affected by massive emissions of pollutants from the local growing industrial complex. The effects of air pollution on the amounts of leaf nitrogen, total soluble phenols and total tannins of Tibouchina pulchra Cogn., a common species in the area of Cubatão, were investigated, as well as the possible influence of the altered parameters on the leaf area damaged by herbivores. Fully expanded leaves were collected at two sites: the valley of Pilões river (VP), characterized by a vegetation virtually not affected by air pollution and taken as a reference; and valley of Mogi river (VM), close to the core region of the industrial complex, and severely affected by air pollution. No differences were observed for any parameters between samples collected in the summer and winter in both sites. On the other hand, compared to VP, individuals growing in VM presented higher amounts of nitrogen and lower amounts of total soluble phenols and total tannins, as well as higher percentages of galls per leaf and higher leaf area lost to herbivores. Regression analysis revealed that the increase in leaf area lost to herbivores can be explained by the increase of the content of nitrogen and decrease in the contents of total soluble phenols and total tannins. Although significant, the coefficients of explanation found were low for all analyses, suggesting that other biotic or abiotic factors are likely to influence leaf attack by herbivores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis focuses on flavonoids, a subgroup of phenolic compounds produced by plants, and how they affect the herbivorous larvae of lepidopterans and sawflies. The first part of the literature review examines different techniques to analyze the chemical structures of flavonoids and their concentrations in biological samples. These techniques include, for example, ultraviolet-visible spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. The second part of the literature review studies how phenolic compounds function in the metabolism of larvae. The harmful oxidation reactions of phenolic compounds in insect guts are also emphasized. In addition to the negative effects, many insect species have evolved the use of phenolic compounds for their own benefit. In the experimental part of the thesis, high concentrations of complex flavonoid oligoglycosides were found in the hemolymph (the circulatory fluid of insects) of birch and pine sawflies. The larvae produced these compounds from simple flavonoid precursors present in the birch leaves and pine needles. Flavonoid glycosides were also found in the cocoon walls of sawflies, which suggested that flavonoids were used in the construction of cocoons. The second part of the experimental work studied the modifications of phenolic compounds in conditions that mimicked the alkaline guts of lepidopteran larvae. It was found that the 24 plant species studied and their individual phenolic compounds had variable capacities to function as oxidative defenses in alkaline conditions. The excrements of lepidopteran and sawfly species were studied to see how different types of phenolics were processed by the larvae. These results suggested that phenolic compounds were oxidized, hydrolyzed, or modified in other ways during their passage through the digestive tract of the larvae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution and structure of heparan sulfate and heparin are briefly reviewed. Heparan sulfate is a ubiquitous compound of animal cells whose structure has been maintained throughout evolution, showing an enormous variability regarding the relative amounts of its disaccharide units. Heparin, on the other hand, is present only in a few tissues and species of the animal kingdom and in the form of granules inside organelles in the cytoplasm of special cells. Thus, the distribution as well as the main structural features of the molecule, including its main disaccharide unit, have been maintained through evolution. These and other studies led to the proposal that heparan sulfate may be involved in the cell-cell recognition phenomena and control of cell growth, whereas heparin may be involved in defense mechanisms against bacteria and other foreign materials. All indications obtained thus far suggest that these molecules perform the same functions in vertebrates and invertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct synthesis from hydrogen and oxygen is a green alternative for production of hydrogen peroxide. However, this process suffers from two challenges. Firstly, mixtures of hydrogen and oxygen are explosive over a wide range of concentrations (4-94% H2 in O2). Secondly, the catalytic reaction of hydrogen and oxygen involves several reaction pathways, many of them resulting in water production and therfore decreasing selectivity. The present work deals with these two challenges. The safety problem was dealed by employing a novel microstructured reactor. Selectivity of the reaction was highly improved by development a set of new catalysts. The final goal was to develop an effective and safe continuous process for direct synthesis of hydrogen peroxide from H2 and O2. Activated carbon cloth and Sibunit were examined as the catalysts’ supports. Palladium and gold monometallic and palladium-gold bimetallic catalysts were thoroughly investigated by numerous kinetic experiments performed in a tailored batch reactor and several catalyst charachterization methods. A complete set of data for direct synthesis of H2O2 and its catalytic decomposition and hydrogenation was obtained. These data were used to assess factors influencing selectivity and activity of the catalysts in direct synthesis of H2O2 as well as its decomposition and hydrogenation. A novel microstructured reactor was developed based on hydrodynamics and mass transfer studies in prototype microstractural plates. The shape and the size of the structural elements in the microreactor plate were optimized in a way to get high gas-liquid interfacial area and gas-liquid mass transfer. Finally, empirical correlations for the volumetric mass transfer coefficient were derived. A bench-scale continuous process was developed by using the novel microstructral plate reactor. A series of kinetic experiments were performed to investigate the effects of the gas and the liquid feed rates and their ratio, the amount of the catalyst, the gas feed composition and pressure on the final rate of H2O2 production and selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distillation is a unit operation of process industry, which is used to separate a liquid mixture into two or more products and to concentrate liquid mixtures. A drawback of the distillation is its high energy consumption. An increase in energy and raw material prices has led to seeking ways to improve the energy efficiency of distillation. In this Master's Thesis, these ways are studied in connection with the concentration of hydrogen peroxide at the Solvay Voikkaa Plant. The aim of this thesis is to improve the energy efficiency of the concentration of the Voikkaa Plant. The work includes a review of hydrogen peroxide and its manufacturing. In addition, the fundamentals of distillation and its energy efficiency are reviewed. An energy analysis of the concentration unit of Solvay Voikkaa Plant is presented in the process development study part. It consists of the current and past information of energy and utility consumptions, balances, and costs. After that, the potential ways to improve the energy efficiency of the distillation unit at the factory are considered and their feasibility is evaluated technically and economically. Finally, proposals to improve the energy efficiency are suggested. Advanced process control, heat integration and energy efficient equipment are the most potential ways to carry out the energy efficient improvements of the concentration at the Solvay Voikkaa factory. Optimization of the reflux flow and the temperatures of the overhead condensers can offer immediate savings in the energy and utility costs without investments. Replacing the steam ejector system with a vacuum pump would result in savings of tens of thousands of euros per year. The heat pump solutions, such as utilizing a mechanical vapor recompression or thermal vapor recompression, are not feasible due to the high investment costs and long pay back times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pharmacological effects of 4-phenyl-2-trichloromethyl-3H-1,5-benzodiazepine hydrogen sulfate (PTMB), a novel synthetic benzodiazepine, were examined in mice. In the elevated plus-maze test of anxiety, 0.3-1 mg/kg diazepam ip (F(3,53) = 3.78; P<0.05) and 1-10 mg/kg PTMB ip increased (F(5,98) = 3.26; P<0.01), whereas 2 mg/kg picrotoxin ip decreased (F(3,59) = 8.32; P<0.001) the proportion of time spent in the open arms, consistent with an anxiolytic action of both benzodiazepines, and an anxiogenic role for picrotoxin. In the holeboard, 1.0 mg/kg diazepam ip increased (F(3,54) = 2.78; P<0.05) and 2 mg/kg picrotoxin ip decreased (F(3,59) = 4.69; P<0.01) locomotor activity. Rotarod assessment revealed that 1 mg/kg diazepam ip and 3, 10 and 30 mg/kg PTMB ip produced significant motor incoordination compared to vehicle control (F(4,70) = 7.6; P<0.001). These data suggest that the recently synthesized PTMB compound possesses anxiolytic activity and produces motor incoordination similar to those observed with diazepam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria are the only prokaryotic organisms performing oxygenic photosynthesis. They comprise a diverse and versatile group of organisms in aquatic and terrestrial environments. Increasing genomic and proteomic data launches wide possibilities for their employment in various biotechnical applications. For example, cyanobacteria can use solar energy to produce H2. There are three different enzymes that are directly involved in cyanobacterial H2 metabolism: nitrogenase (nif) which produces hydrogen as a byproduct in nitrogen fixation; bidirectional hydrogenase (hox) which functions both in uptake and in production of H2; and uptake hydrogenase (hup) which recycles the H2 produced by nitrogenase back for the utilization of the cell. Cyanobacterial strains from University of Helsinki Cyanobacteria Collection (UHCC), isolated from the Baltic Sea and Finnish lakes were screened for efficient H2 producers. Screening about 400 strains revealed several promising candidates producing similar amounts of H2 (during light) as the ΔhupL mutant of Anabaena PCC 7120, which is specifically engineered to produce higher amounts of H2 by the interruption of uptake hydrogenase. The optimal environmental conditions for H2 photoproduction were significantly different between various cyanobacterial strains. All suitable strains revealed during screening were N2-fixing, filamentous and heterocystous. The top ten H2 producers were characterized for the presence and activity of the enzymes involved in H2 metabolism. They all possess the genes encoding the conventional nitrogenase (nifHDK1). However, the high H2 photoproduction rates of these strains were shown not to be directly associated with the maximum capacities of highly active nitrogenase or bidirectional hydrogenase. Most of the good producers possessed a highly active uptake hydrogenase, which has been considered as an obstacle for efficient H2 production. Among the newly revealed best H2 producing strains, Calothrix 336/3 was chosen for further, detailed characterization. Comparative analysis of the structure of the nif and hup operons encoding the nitrogenase and uptake hydrogenase enzymes respectively showed minor differences between Calothrix 336/3 and other N2-fixing model cyanobacteria. Calothrix 336/3 is a filamentous, N2-fixing cyanobacterium with ellipsoidal, terminal heterocysts. A common feature of Calothrix 336/3 is that the cells readily adhere to substrates. To make use of this feature, and to additionally improve H2 photoproduction capacity of the Calothrix 336/3 strain, an immobilization technique was applied. The effects of immobilization within thin alginate films were evaluated by examining the photoproduction of H2 of immobilized Calothrix 336/3 in comparison to model strains, the Anabaena PCC 7120 and its ΔhupL mutant. In order to achieve optimal H2 photoproduction, cells were kept under nitrogen starved conditions (Ar atmosphere) to ensure the selective function of nitrogenase in reducing protons to H2. For extended H2 photoproduction, cells require CO2 for maintenance of photosynthetic activity and recovery cycles to fix N2. Application of regular H2 production and recovery cycles, Ar or air atmospheres respectively, resulted in prolongation of H2 photoproduction in both Calothrix 336/3 and the ΔhupL mutant of Anabaena PCC 7120. However, recovery cycles, consisting of air supplemented with CO2, induced a strong C/N unbalance in the ΔhupL mutant leading to a decrease in photosynthetic activity, although total H2 yield was still higher compared to the wild-type strain. My findings provide information about the diversity of cyanobacterial H2 capacities and mechanisms and provide knowledge of the possibilities of further enhancing cyanobacterial H2 production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anticlotting and antithrombotic activities of heparin, heparan sulfate, low molecular weight heparins, heparin and heparin-like compounds from various sources used in clinical practice or under development are briefly reviewed. Heparin isolated from shrimp mimics the pharmacological activities of low molecular weight heparins. A heparan sulfate from Artemia franciscana and a dermatan sulfate from tuna fish show a potent heparin cofactor II activity. A heparan sulfate derived from bovine pancreas has a potent antithrombotic activity in an arterial and venous thrombosis model with a negligible activity upon the serine proteases of the coagulation cascade. It is suggested that the antithrombotic activity of heparin and other antithrombotic agents is due at least in part to their action on endothelial cells stimulating the synthesis of an antithrombotic heparan sulfate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is evidence concerning the participation of reactive oxygen species in the etiology and physiopathology of human diseases, such as neurodegenerative disorders, inflammation, viral infections, autoimmune pathologies, and digestive system disorders such as gastrointestinal inflammation and gastric ulcer. The role of these reactive oxygen species in several diseases and the potential antioxidant protective effect of natural compounds on affected tissues are topics of high current interest. To consider a natural compound or a drug as an antioxidant substance it is necessary to investigate its antioxidant properties in vitro and then to evaluate its antioxidant functions in biological systems. In this review article, we shall consider the role of natural antioxidants derived from popular plants to reduce or prevent the oxidative stress in gastric ulcer induced by ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of the product of H2O2 and (PhSe)2 with delta-aminolevulinate dehydratase (delta-ALA-D) from mammals and plants was investigated. (PhSe)2 inhibited rat hepatic delta-ALA-D with an IC50 of 10 µM but not the enzyme from cucumber leaves. The reaction of (PhSe)2 with H2O2 for 1 h increased the inhibitory potency of the original compound and the IC50 for animal delta-ALA-D inhibition was decreased from 10 to 2 µM. delta-ALA-D from cucumber leaves was also inhibited by the products of reaction of (PhSe)2 with H2O2 with an IC50 of 4 µM. The major product of reaction of (PhSe)2 with H2O2 was identified as seleninic acid and produced an intermediate with a lambdamax at 265 nm after reaction with t-BuSH. These results suggest that the interaction of (PhSe)2 with mammal delta-ALA-D requires the presence of cysteinyl residues in close proximity. Two cysteine residues in spatial proximity have been recently described for the mammalian enzyme. Analysis of the primary structure of plant delta-ALA-D did not reveal an analogous site. In contrast to (PhSe)2, seleninic acid, as a result of the higher electrophilic nature of its selenium atom, may react with additional cysteinyl residue(s) in mammalian delta-ALA-D and also with cysteinyl residues from cucumber leaves located at a site distinct from that found at the B and A sites in mammals. Although the interaction of organochalcogens with H2O2 may have some antioxidant properties, the formation of seleninic acid as a product of this reaction may increase the toxicity of organic chalcogens such as (PhSe)2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The widespread use of ³H and 14C in research has generated a large volume of waste mixed with scintillation liquid, requiring an effective control and appropriate storage of liquid radioactive waste. In the present study, we compared the efficacy of three commercially available scintillation liquids, Optiphase HiSafe 3, Ultima-Gold™ AB (biodegradable) and Insta-Gel-XF (non-biodegradable), in terms of [14C]-glucose and [³H]-thymidine counting efficiency. We also analyzed the effect of the relative amount of water (1.6 to 50%), radioisotope concentration (0.1 to 100 nCi/ml), pH (2 to 10) and color of the solutions (samples containing 0.1 to 1.0 mg/ml of Trypan blue) on the counting efficiency in the presence of these scintillation liquids. There were few significant differences in the efficiency of 14C and ³H counting obtained with biodegradable or non-biodegradable scintillation liquids. However, there was an 83 and 94% reduction in the efficiency of 14C and ³H counting, respectively, in samples colored with 1 mg/ml Trypan blue, but not with 0.1 mg/ml, independent of the scintillation liquid used. Considering the low cost of biodegradable scintillation cocktails and their efficacy, these results show that traditional hazardous scintillation fluids may be replaced with the new safe biodegradable fluids without impairment of ³H and 14C counting efficiency. The use of biodegradable scintillation cocktails minimizes both human and environmental exposure to hazardous solvents. In addition, some biodegradable scintillation liquids can be 40% less expensive than the traditional hazardous cocktails.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorhexidine, even at low concentrations, is toxic for a variety of eukaryotic cells; however, its effects on host immune cells are not well known. We evaluated in vitro chlorhexidine-induced cytotoxicity and its effects on reactive oxygen/nitrogen intermediate induction by murine peritoneal macrophages. Thioglycollate-induced cells were obtained from Swiss mice by peritoneal lavage with 5 ml of 10 mM phosphate-buffered saline, washed twice and resuspended (10(6) cells/ml) in appropriate medium for each test. Cell preparations contained more than 95% macrophages. The cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay and the presence of hydrogen peroxide (H2O2) and nitric oxide (NO) by the horseradish peroxidase-dependent oxidation of phenol red and Griess reaction, respectively. The midpoint cytotoxicity values for 1- and 24-h exposures were 61.12 ± 2.46 and 21.22 ± 2.44 µg/ml, respectively. Chlorhexidine did not induce synthesis or liberation of reactive oxygen/nitrogen intermediates. When macrophages were treated with various sub-toxic doses for 1 h (1, 5, 10, and 20 µg/ml) and 24 h (0.5, 1, and 5 µg/ml) and stimulated with 200 nM phorbol myristate acetate (PMA) solution, the H2O2 production was not altered; however, the NO production induced by 10 µg/ml lipopolysaccharide (LPS) solution varied from 14.47 ± 1.46 to 22.35 ± 1.94 µmol/l and 13.50 ± 1.42 to 20.44 ± 1.40 µmol/l (N = 5). The results showed that chlorhexidine has no immunostimulating activity and sub-toxic concentrations did not affect the response of macrophages to the soluble stimulus PMA but can interfere with the receptor-dependent stimulus LPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitosis is under the stringent quality control of the spindle assembly checkpoint (SAC). However, in cancer cells this control can fail, leading to excessive cellular proliferation and ultimately to the formation of a tumor. Novel cancer cell selective therapies are needed to stop the uncontrolled cell proliferation and tumor growth. The aim of the research presented in this thesis was to identify microRNAs (miRNAs) that could play a role in cancer cell proliferation as well as low molecular weight (LMW) compounds that could interfere with cell division. The findings could be used to develop better cancer diagnostics and therapies in the future. First, a high-throughput screen (HTS) was performed to identify LMW compounds that possess a similar chemical interaction field as rigosertib, an anti-cancer compound undergoing clinical trials. A compound termed Centmitor-1 was discovered that phenocopied the cellular impact of rigosertib by affecting the microtubule dynamics. Next, another HTS aimed at identifying compounds that would target the Hec1 protein, which mediates the interaction between spindle microtubules and chromosomes. Perturbation of this connection should prevent cell division and induce cell death. A compound termed VTT-006 was discovered that abrogated mitosis in several cell line models and exhibited binding to Hec1 in vitro. Lastly, using a cell-based HTS two miRNAs were identified that affected cancer cell proliferation via Aurora B kinase, which is an important mitotic regulator. MiR-378a-5p was found to indirectly suppress the production of the kinase whereas let-7b showed direct binding to the 3’UTR of Aurora B mRNA and repressed its translation. The miRNA-mediated perturbation of Aurora B induced defects in mitosis leading to abnormal chromosome segregation and induction of aneuploidy. The results of this thesis provide new information on miRNA signaling in cancer, which could be utilized for diagnostic purposes. Moreover, the thesis introduces two small compounds that may benefit future drug research.