831 resultados para human activity recognition


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of verapamil modulating collagen biosynthesis have prompted us to study the role of this drug in cultured fibroblasts. In this article, we describe the effects of verapamil on fibroblast behaviour, with special emphasis to phenotypic modifications, reorganisation of actin filaments and secretion of MMP1. Human dermal fibroblasts treated with 50-mu M verapamil changed their normal spindle-shaped morphology to stellate. Treated cells showed discrete reorganisation of actin filaments, as revealed by fluorescein isothiocyanate (FITC)-phalloidin staining and confocal microscopy. We hypothesised that these effects would be associated to lower levels of cytosolic Ca(2+). Indeed, short time loading with calcium green confirmed that verapamil-treated fibroblasts exhibited lower intracellular calcium levels compared to controls. We also observed that verapamil increases the secretion of MMP1 in cultured fibroblasts, as demonstrated by zymography, specific substrate assays and immunoblot. The morphological alterations induced by verapamil are neither cytotoxic nor associated with other dramatic cytoskeleton alterations. Thus we may conclude that this drug enhances collagenase secretion and does not disrupt the major tracks necessary to deliver these enzymes in the extracellular space. The present results suggested that verapamil could be used at physiological levels to enhance collagen I breakdown, and maybe considered a potential candidate for intralesional therapy of wound healing and fibrocontractive diseases. (C) 2010 Elsevier Ltd and ISBI. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We studied the induction of protease activity by the laminin alpha 1-derived peptide AG73 in cells from adenoid cystic carcinoma (CAC2) and myoepithelioma (M1), respectively a malignant and a benign salivary gland tumors. Laminin alpha 1 chain and MMP9 were immunolocalized in adenoid cystic carcinoma and myoepithelioma in vivo and in vitro. Cells grown inside AG73-enriched laminin-111 exhibited large spaces in the extracellular matrix, suggestive of remodeling. The broad spectrum MMP inhibitor GM6001 decreased spaces induced by AG73 in CAC2 and M I cells. This result strongly suggests that AG73-mediated matrix remodeling involves matrix metalloproteinases. CAC2 and M1 cells cultured on AG73 showed a dose-dependent increase of MMP9 secretion, as detected by zymography. Furthermore, siRNA silencing of MMP9 decreased remodeling in 3D cultures. We searched for AG73 receptors regulating MMP9 activity in our cell lines. CAC2 and M1 cells grown on AG73 exhibited colocalization of syndecan-1 and beta 1 integrin. siRNA knockdown of syndecan-1 expression in these cells resulted in decreased adhesion to AG73 and reduced protease and remodeling activity. We investigated syndecan-1 co-receptors in both cell lines. Silencing beta 1 integrin inhibited adhesion to AG73, matrix remodeling and protease activity. Double-knockdown experiments were carried out to further explore syndecan-1 and beta 1 integrin cooperation. CAC2 cells transfected with both syndecan-1 and beta 1 integrin siRNA oligos showed significant decrease in adhesion to AG73. Simultaneous silencing of receptors also induced a decrease in protease activity. Our results suggest that syndecan-1 and beta 1 integrin signaling downstream of AG73 regulate adhesion and MMP production by CAC2 and M1 cells. (c) 2008 Elsevier B.V./International Society of Matrix Biology. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human parasitic diseases are the foremost threat to human health and welfare around the world. Trypanosomiasis is a very serious infectious disease against which the currently available drugs are limited and not effective. Therefore, there is an urgent need for new chemotherapeutic agents. One attractive drug target is the major cysteine protease from Trypanosoma cruzi, cruzain. In the present work, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies were conducted on a series of thiosemicarbazone and semicarbazone derivatives as inhibitors of cruzain. Molecular modeling studies were performed in order to identify the preferred binding mode of the inhibitors into the enzyme active site, and to generate structural alignments for the three-dimensional quantitative structure-activity relationship (3D QSAR) investigations. Statistically significant models were obtained (CoMFA. r(2) = 0.96 and q(2) = 0.78; CoMSIA, r(2) = 0.91 and q(2) = 0.73), indicating their predictive ability for untested compounds. The models were externally validated employing a test set, and the predicted values were in good agreement with the experimental results. The final QSAR models and the information gathered from the 3D CoMFA and CoMSIA contour maps provided important insights into the chemical and structural basis involved in the molecular recognition process of this family of cruzain inhibitors, and should be useful for the design of new structurally related analogs with improved potency. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transthyretin (TTR) is a tetrameric beta-sheet-rich transporter protein directly involved in human amyloid diseases. Several classes of small molecules can bind to TTR delaying its amyloid fibril formation, thus being promising drug candidates to treat TTR amyloidoses. In the present study, we characterized the interactions of the synthetic triiodo L-thyronine analogs and thyroid hormone nuclear receptor TR beta-selecfive agonists GC-1 and GC-24 with the wild type and V30M variant of human transthyretin (TTR). To achieve this aim, we conducted in vitro TTR acid-mediated aggregation and isothermal titration calorimetry experiments and determined the TTR:GC-1 and TTR:GC-24 crystal structures. Our data indicate that both GC-1 and GC-24 bind to TTR in a non-cooperative manner and are good inhibitors of TTR aggregation, with dissociation constants for both hormone binding sites (HBS) in the low micromolar range. Analysis of the crystal structures of TTRwt:GC-1(24) complexes and their comparison with the TTRwt X-ray structure bound to its natural ligand thyroxine (T4) suggests, at the molecular level, the basis for the cooperative process displayed by T4 and the non-cooperative process provoked by both GC-1 and GC-24 during binding to TTR. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human transthyretin (TTR) is a homotetrameric protein involved in several amyloidoses. Zn(2+) enhances TTR aggregation in vitro, and is a component of ex vivo TTR amyloid fibrils. We report the first crystal structure of human TTR in complex with Zn(2+) at pH 4.6-7.5. All four structures reveal three tetra-coordinated Zn(2+)-binding sites (ZBS 1-3) per monomer, plus a fourth site (ZBS 4) involving amino acid residues from a symmetry-related tetramer that is not visible in solution by NMR.Zn(2+) binding perturbs loop E-alpha-helix-loop F, the region involved in holo-retinol-binding protein (holo-RBP) recognition, mainly at acidic pH; TTR affinity for holo-RBP decreases similar to 5-fold in the presence of Zn(2+). Interestingly, this same region is disrupted in the crystal structure of the amyloidogenic intermediate of TTR formed at acidic pH in the absence of Zn(2+). HNCO and HNCA experiments performed in solution at pH 7.5 revealed that upon Zn(2+) binding, although the alpha-helix persists, there are perturbations in the resonances of the residues that flank this region, suggesting an increase in structural flexibility. While stability of the monomer of TTR decreases in the presence of Zn(2+), which is consistent with the tertiary structural perturbation provoked by Zn(2+) binding, tetramer stability is only marginally affected by Zn(2+). These data highlight structural and functional roles of Zn(2+) in TTR-related amyloidoses, as well as in holo-RBP recognition and vitamin A homeostasis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Unlike intermolecular disulfide bonds, other protein cross-links arising from oxidative modifications cannot be reversed and are presumably more toxic to cells because they may accumulate and induce protein aggregation. However, most of these irreversible protein cross-links remain poorly characterized. For instance, the antioxidant enzyme human superoxide dismutase 1 (hSod1) has been reported to undergo non-disulfide covalent dimerization and further oligomerization during its bicarbonate-dependent peroxidase activity. The dimerization was shown to be dependent on the oxidation of the single, solvent-exposed TrP(32) residue of hSod1, but the covalent dimer was not isolated nor was its structure determined. In this work, the hSod1 covalent dimer was isolated, digested with trypsin in H(2)O and H(2)(18)O, and analyzed by UV-Vis spectroscopy and mass spectrometry (MS). The results demonstrate that the covalent dimer consists of two hSod1 subunits cross-linked by a ditryptophan, which contains a bond between C3 and N1 of the respective Trp(32) residues. We further demonstrate that the cross-link cleaves under usual MS/MS conditions leading to apparently unmodified Trp(32), partially hinders proteolysis, and provides a mechanism to explain the formation of hSod1 covalent trimers and tetramers. This characterization of the covalent hSod1 dimer identifies a novel oxidative modification of protein Trp residues and provides clues for studying its occurrence in vivo. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shwachman-Bodian-Diamond syndrome is an autosomal recessive genetic syndrome with pleiotropic phenotypes, including pancreatic deficiencies, bone marrow dysfunctions with increased risk of myelodysplasia or leukemia, and skeletal abnormalities. This syndrome has been associated with mutations in the SBDS gene, which encodes a conserved protein showing orthologs in Archaea and eukaryotes. The Shwachman-Bodian-Diamond syndrome pleiotropic phenotypes may be an indication of different cell type requirements for a fully functional SBDS protein. RNA-binding activity has been predicted for archaeal and yeast SBDS orthologs, with the latter also being implicated in ribosome biogenesis. However, full-length SBDS orthologs function in a species-specific manner, indicating that the knowledge obtained from model systems may be of limited use in understanding major unresolved issues regarding SBDS function, namely, the effect of mutations in human SBDS on its biochemical function and the specificity of RNA interaction. We determined the solution structure and backbone dynamics of the human SBDS protein and describe its RNA binding site using NMR spectroscopy. Similarly to the crystal structures of Archaea, the overall structure of human SBDS comprises three well-folded domains. However, significant conformational exchange was observed in NMR dynamics experiments for the flexible linker between the N-terminal domain and the central domain, and these experiments also reflect the relative motions of the domains. RNA titrations monitored by heteronuclear correlation experiments and chemical shift mapping analysis identified a classic RNA binding site at the N-terminal FYSH (fungal, Yhr087wp, Shwachman) domain that concentrates most of the mutations described for the human SBDS. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to identify whether activity modeling framework supports problem analysis and provides a traceable and tangible connection from the problem identification up to solution modeling. Methodology validation relied on a real problem from a Portuguese teaching syndicate (ASPE), regarding courses development and management. The study was carried out with a perspective to elaborate a complete tutorial of how to apply activity modeling framework to a real world problem. Within each step of activity modeling, we provided a summary elucidation of the relevant elements required to perform it, pointed out some improvements and applied it to ASPE’s real problem. It was found that activity modeling potentiates well structured problem analysis as well as provides a guiding thread between problem and solution modeling. It was concluded that activity-based task modeling is key to shorten the gap between problem and solution. The results revealed that the solution obtained using activity modeling framework solved the core concerns of our customer and allowed them to enhance the quality of their courses development and management. The principal conclusion was that activity modeling is a properly defined methodology that supports software engineers in problem analysis, keeping a traceable guide among problem and solution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives: The incorporation of antibacterial agents into adhesive systems has been proposed to eliminate residual bacteria from dentine. This study used the agar diffusion method to evaluate the antibacterial activity of Clearfil Protect Bond (CPB), Clearfil SE Bond (CSEB), Clearfil Tri-S Bond (C3SB) and Xeno-III (XIII) self-etching adhesive systems, with or without light-activation, against cariogenic bacteria, and to assess the influence of human dentine on the antibacterial activity of these materials.Methods: An aliquot of 10 mu l per material (and individual components) were pipetted onto paper and dentine discs distributed in Petri dishes containing bacterial culture in BHI agar. Positive control was 0.2% chlorhexidine digluconate (CHX).Results: After incubation, the adhesive components of CPB and CSEB, liquid A of XIII and C3SB did not present antibacterial activity when applied to paper discs. The non-light-activated CPB primer + adhesive promoted the greatest inhibition of Streptococcus mutans (p < 0.05), whereas with light-activation, there was no significant difference between primer + adhesive and primer alone. For Lactobacillus acidophilus, CPB primer presented the greatest antibacterial activity in both light-activation conditions (p < 0.05). Regarding the dentine discs, only CHX promoted an inhibitory effect, though less intense than on paper discs (p < 0.05). CHX presented greater antibacterial activity against S. mutans than against L. acidophilus (p < 0.05).Conclusions: Light-activation significantly reduced the antibacterial activity of the self-etching adhesive systems; MDPB incorporation contributed to the effect of adhesive systems against cariogenic bacteria; the components eluted from the adhesive systems were not capable to diffuse through 400 mu m-thick dentine disc to exert their antibacterial activity against cariogenic bacteria. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)