938 resultados para higher-order element
Resumo:
We reviewed the use of advanced display technologies for monitoring in anesthesia. Researchers are investigating displays that integrate information and that, in some cases, also deliver the results continuously to the anesthesiologist. Integrated visual displays reveal higher-order properties of patient state and speed in responding to events, but their benefits under an intensely timeshared load is unknown. Head-mounted displays seem to shorten the time to respond to changes, but their impact on peripheral awareness and attention is unknown. Continuous auditory displays extending pulse oximetry seem to shorten response times and improve the ability to time-share other tasks, but their integration into the already noisy operative environment still needs to be tested. We reviewed the advantages and disadvantages of the three approaches, drawing on findings from other fields, such as aviation, to suggest outcomes where there are still no results for the anesthesia context. Proving that advanced patient monitoring displays improve patient outcomes is difficult, and a more realistic goal is probably to prove that such displays lead to better situational awareness, earlier responding, and less workload, all of which keep anesthesia practice away from the outer boundaries of safe operation.
Resumo:
In this paper, we review evidence from comparative studies of primate cortical organization, highlighting recent findings and hypotheses that may help us to understand the rules governing evolutionary changes of the cortical map and the process of formation of areas during development. We argue that clear unequivocal views of cortical areas and their homologies are more likely to emerge for 'core' fields, including the primary sensory areas, which are specified early in development by precise molecular identification steps. In primates, the middle temporal area is probably one of these primordial cortical fields. Areas that form at progressively later stages of development correspond to progressively more recent evolutionary events, their development being less firmly anchored in molecular specification. The certainty with which areal boundaries can be delimited, and likely homologies can be assigned, becomes increasingly blurred in parallel with this evolutionary/developmental sequence. For example, while current concepts for the definition of cortical areas have been vindicated in allowing a clarification of the organization of the New World monkey 'third tier' visual cortex (the third and dorsomedial areas, V3 and DM), our analyses suggest that more flexible mapping criteria may be needed to unravel the organization of higher-order visual association and polysensory areas.
Resumo:
Vertical-cavity surface-emitting lasers (VCSELs) and microlenses can be used to implement free space optical interconnects (FSOIs) which do not suffer from the bandwidth limitations inherent in metallic interconnects. A comprehensive link equation describing the effects of both optical and electrical noise is introduced. We have evaluated FSOI performance by examining the following metrics: the space-bandwidth product (SBP), describing the density of channels and aggregate bandwidth that can be achieved, and the carrier-to-noise ratio (CNR), which represents the relative strength of the carrier signal. The mode expansion method (MEM) was used to account for the primary cause of optical noise: laser beam diffraction. While the literature commonly assumes an ideal single-mode laser beam, we consider the experimentally determined multimodal structure of a VCSEL beam in our calculations. It was found that maximum achievable interconnect length and density for a given CNR was significantly reduced when the higher order transverse modes were present in Simulations. However, the Simulations demonstrate that free-space optical interconnects are still a suitable solution for the communications bottleneck, despite the adverse effects introduced by transverse modes.
Resumo:
Functional interactions between classical cadherins and the actin cytoskeleton involve diverse actin activities, including filament nucleation, cross-linking, and bundling. In this report, we explored the capacity of Ena/VASP proteins to regulate the actin cytoskeleton at cadherin-adhesive contacts. We extended the observation that Ena/vasodilator-stimulated phosphoprotein (VASP) proteins localize at cell-cell contacts to demonstrate that E-cadherin homophilic ligation is sufficient to recruit Mena to adhesion sites. Ena/VASP activity was necessary both for F-actin accumulation and assembly at cell-cell contacts. Moreover, we identified two distinct pools of Mena within individual homophilic adhesions that cells made when they adhered to cadherin-coated substrata. These Mena pools localized with Arp2/3-driven cellular protrusions as well as at the tips of cadherin-based actin bundles. Importantly, Ena/VASP activity was necessary for both modes of actin activity to be expressed. Moreover, selective depletion of Ena/VASP proteins from the tips of cadherin-based bundles perturbed the bundles without affecting the protrusive F-actin pool. We propose that Ena/VASP proteins may serve as higher order regulators of the cytoskeleton at cadherin contacts through their ability to modulate distinct modes of actin organization at those contacts.
Resumo:
This work deals with the random free vibration of functionally graded laminates with general boundary conditions and subjected to a temperature change, taking into account the randomness in a number of independent input variables such as Young's modulus, Poisson's ratio and thermal expansion coefficient of each constituent material. Based on third-order shear deformation theory, the mixed-type formulation and a semi-analytical approach are employed to derive the standard eigenvalue problem in terms of deflection, mid-plane rotations and stress function. A mean-centered first-order perturbation technique is adopted to obtain the second-order statistics of vibration frequencies. A detailed parametric study is conducted, and extensive numerical results are presented in both tabular and graphical forms for laminated plates that contain functionally graded material which is made of aluminum and zirconia, showing the effects of scattering in thermo-clastic material constants, temperature change, edge support condition, side-to-thickness ratio, and plate aspect ratio on the stochastic characteristics of natural frequencies. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper develops an evolutionary theory of adaptive growth, understood as a product of structural change and economic self-transformation, based upon processes that are closely connected with but not reducible to the growth of knowledge. The dominant connecting theme is enterprise, the innovative variations it generates and the multiple connections between investment, innovation, demand and structural transformation in the market process. The paper explores the dependence of macroeconomic productivity growth on the diversity of technical progress functions and income elasticities of demand at the industry level, and the resolution of this diversity into patterns of economic change through market processes. It is shown how industry growth rates are constrained by higher-order processes of emergence that convert an ensemble of industry growth rates into an aggregate rate of growth. The growth of productivity, output and employment are determined mutually and endogenously, and their values depend on the variation in the primary causal influences in the system.
Resumo:
A new integration scheme is developed for nonequilibrium molecular dynamics simulations where the temperature is constrained by a Gaussian thermostat. The utility of the scheme is demonstrated by its application to the SLLOD algorithm which is the standard nonequilibrium molecular dynamics algorithm for studying shear flow. Unlike conventional integrators, the new integrators are constructed using operator-splitting techniques to ensure stability and that little or no drift in the kinetic energy occurs. Moreover, they require minimum computer memory and are straightforward to program. Numerical experiments show that the efficiency and stability of the new integrators compare favorably with conventional integrators such as the Runge-Kutta and Gear predictor-corrector methods. (C) 1999 American Institute of Physics. [S0021-9606(99)50125-6].
Resumo:
In spite of the prominence assigned to innovation in the strategic marketing literature particularly in the area of competitive strategy there have been several inadequacies in the conceptualization and measurement of the innovation construct. Responding to the need for a comprehensive measure, this paper attempts to develop and validate a measure for organisational innovation. Addressing the need to capture both the degree and type of innovation, as well as the synergistic influence of innovation types on performance outcomes, this paper proposes operationalising organisational innovation as a multidimensional construct. The proposed measure has a complex higher order structure that captures the variance in its dimensions that are different forms manifested by the construct. The measure also captures the synergistic impact of different innovation types on competitive advantage. The implications for theory, limitations and directions for future research are presented.
Resumo:
Collaborative filtering is regarded as one of the most promising recommendation algorithms. The item-based approaches for collaborative filtering identify the similarity between two items by comparing users' ratings on them. In these approaches, ratings produced at different times are weighted equally. That is to say, changes in user purchase interest are not taken into consideration. For example, an item that was rated recently by a user should have a bigger impact on the prediction of future user behaviour than an item that was rated a long time ago. In this paper, we present a novel algorithm to compute the time weights for different items in a manner that will assign a decreasing weight to old data. More specifically, the users' purchase habits vary. Even the same user has quite different attitudes towards different items. Our proposed algorithm uses clustering to discriminate between different kinds of items. To each item cluster, we trace each user's purchase interest change and introduce a personalized decay factor according to the user own purchase behaviour. Empirical studies have shown that our new algorithm substantially improves the precision of item-based collaborative filtering without introducing higher order computational complexity.
Resumo:
Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.
Investigation of the Effect of Array Geometry on the Performance of Free-Space Optical Interconnects
Resumo:
The effect of transmitter and receiver array configurations on the stray-light and diffraction-caused crosstalk in free-space optical interconnects was investigated. The optical system simulation software (Code V) is used to simulate both the stray-light and diffraction-caused crosstalk. Experimentally measured, spectrally-resolved, near-field images of VCSEL higher order modes were used as extended sources in our simulation model. In addition, we have included the electrical and optical noise in our analysis to give more accurate overall performance of the FSOI system. Our results show that by changing the square lattice geometry to a hexagonal configuration, we obtain an overall signal-to-noise ratio improvement of 3 dB. Furthermore, system density is increased by up to 4 channels/mm2.
Resumo:
We investigate the effect of transmitter and receiver array configurations on the stray-light and diffraction-caused crosstalk in free-space optical interconnects. The optical system simulation software (Code V) is used to simulate both the stray-light and diffraction-caused crosstalk. Experimentally measured, spectrally-resolved, near-field images of VCSEL higher order modes were used as extended sources in our simulation model. Our results show that by changing the square lattice geometry to a hexagonal configuration, we obtain the reduction in the stray-light crosstalk of up to 9 dB and an overall signal-to-noise ratio improvement of 3 dB.
Resumo:
This paper describes a formal component language, used to support automated component-based program development. The components, referred to as templates, are machine processable, meaning that appropriate tool support, such as retrieval support, can be developed. The templates are highly adaptable, meaning that they can be applied to a wide range of problems. Some of the main features of the language are described, including: higher-order parameters; state variable declarations; specification statements and conditionals; applicability conditions and theories; meta-level place holders; and abstract data structures.
Resumo:
The Meta-Object Facility (MOF) provides a standardized framework for object-oriented models. An instance of a MOF model contains objects and links whose interfaces are entirely derived from that model. Information contained in these objects can be accessed directly, however, in order to realize the Model-Driven Architecture@trade; (MDA), we must have a mechanism for representing and evaluating structured queries on these instances. The MOF Query Language (MQL) is a language that extends the UML's Object Constraint Language (OCL) to provide more expressive power, such as higher-order queries, parametric polymorphism and argument polymorphism. Not only do these features allow more powerful queries, but they also encourage a greater degree of modularization and re-use, resulting in faster prototyping and facilitating automated integrity analysis. This paper presents an overview of the motivations for developing MQL and also discusses its abstract syntax, presented as a MOF model, and its semantics