931 resultados para heat shock response
Resumo:
Yeast and animals use mitogen-activated protein (MAP) kinase cascades to mediate stress and extracellular signals. We have tested whether MAP kinases are involved in mediating environmental stress responses in plants. Using specific peptide antibodies that were raised against different alfalfa MAP kinases, we found exclusive activation of p44MMK4 kinase in drought- and cold-treated plants. p44MMK4 kinase was transiently activated by these treatments and was correlated with a shift in the electrophoretic mobility of the p44MMK4 protein. Although transcript levels of the MMK4 gene accumulated after drought and cold treatment, no changes in p44MMK4 steady state protein levels were observed, indicating a posttranslational activation mechanism. Extreme temperatures, drought, and salt stress are considered to be different forms of osmotic stress. However, high salt concentrations or heat shock did not induce activation of p44MMK4, indicating the existence of distinct mechanisms to mediate different stresses in alfalfa. Stress adaptation in plants is mediated by abscisic acid (ABA)-dependent and ABA-independent processes. Although ABA rapidly induced the transcription of an ABA-inducible marker gene, MMK4 transcript levels did not increase and p44MMK4 kinase was not activated. These data indicate that the MMK4 kinase pathway mediates drought and cold signaling independently of ABA.
Resumo:
Effects of environmental stresses on the subcellular localization of PKN were investigated in NIH 3T3, BALB/c 3T3, and Rat-1 cells. The immunofluorescence of PKN resided prominently in the cytoplasmic region in nonstressed cells. When these cells were treated at 42 degrees C, there was a time-dependent decrease of the immunofluorescence of PKN in the cytoplasmic region that correlated with an increase within the nucleus as observed by confocal microscope. After incubation at 37 degrees C following beat shock, the immunofluorescence of PKN returned to the perinuclear and cytoplasmic regions from the nucleus. The nuclear translocation of PKN by heat shock was supported by the biochemical subcellular fractionation and immunoblotting. The nuclear localization of PKN was also observed when the cells were exposed to other stresses such as sodium arsenite and serum starvation. These results raise the possibility that there is a pathway mediating stress signals from the cytosol to the nucleus through PKN.
Resumo:
Trichomonads are among the earliest eukaryotes to diverge from the main line of eukaryotic descent. Keeping with their ancient nature, these facultative anaerobic protists lack two "hallmark" organelles found in most eukaryotes: mitochondria and peroxisomes. Trichomonads do, however, contain an unusual organelle involved in carbohydrate metabolism called the hydrogenosome. Like mitochondria, hydrogenosomes are double-membrane bounded organelles that produce ATP using pyruvate as the primary substrate. Hydrogenosomes are, however, markedly different from mitochondria as they lack DNA, cytochromes and the citric acid cycle. Instead, they contain enzymes typically found in anaerobic bacteria and are capable of producing molecular hydrogen. We show here that hydrogenosomes contain heat shock proteins, Hsp70, Hsp60, and Hsp10, with signature sequences that are conserved only in mitochondrial and alpha-Gram-negative purple bacterial Hsps. Biochemical analysis of hydrogenosomal Hsp60 shows that the mature protein isolated from the organelle lacks a short, N-terminal sequence, similar to that observed for most nuclear-encoded mitochondrial matrix proteins. Moreover, phylogenetic analyses of hydrogenosomal Hsp70, Hsp60, and Hsp10 show that these proteins branch within a monophyletic group composed exclusively of mitochondrial homologues. These data establish that mitochondria and hydrogenosomes have a common eubacterial ancestor and imply that the earliest-branching eukaryotes contained the endosymbiont that gave rise to mitochondria in higher eukaryotes.
Resumo:
Immunophilins are intracellular receptors for the immunosuppressants cyclosporin A, FK506, and rapamycin. In addition to their use in organ transplantation, these natural products have been used to investigate signaling pathways in yeast, plant, and mammalian cells. We have recently described the identification of an immunosuppressant-sensitive signaling pathway in and the purification of several immunophilins from Vicia faba plants. We now report the molecular characterization of a 15 kDa FK506- and rapamycin-binding protein from V. faba (VfFKBP15). The amino acid sequence deduced from the cDNA starts with a signal peptide of 22 hydrophobic amino acids. The core region of VfFKBP15 is most similar to yeast and mammalian FKBP13 localized in the endoplasmic reticulum (ER). In addition, VfFKBP15 has a carboxyl-terminal sequence that is ended with SSEL, a putative ER retention signal. These findings suggest that VfFKBP15 is a functional homolog of FKBP13 from other organisms. Interestingly, two distinct cDNAs corresponding to two isoforms of FKBP15 have been cloned from Arabidopsis and also identified from rice data base, suggesting that pFKBP15 (plant FKBP15) is encoded by a small gene family in plants. This adds to the diversity of plant FKBP members even with the same subcellular localization and is in contrast with the situation in mammalian and yeast systems in which only one FKBP13 gene has been found. Like the mammalian and yeast FKBP13, the recombinant VfFKBP15 protein has rotamase activity that is inhibited by both FK506 and rapamycin with a Ki value of 30 nM and 0.9 nM, respectively, illustrating that VfFKBP15 binds rapamycin in preference over FK506. The mRNA of VfFKBP15 is ubiquitously expressed in various plant tissues including leaves, stems, and roots, consistent with the ER localization of the protein. Levels of VfFKBP15 mRNA are elevated by heat shock, suggesting a possible role for this FKBP member under stress conditions.
Resumo:
We have isolated a new type of ATP-dependent protease from Escherichia coli. It is the product of the heat-shock locus hslVU that encodes two proteins: HslV, a 19-kDa protein similar to proteasome beta subunits, and HslU, a 50-kDa protein related to the ATPase ClpX. In the presence of ATP, the protease hydrolyzes rapidly the fluorogenic peptide Z-Gly-Gly-Leu-AMC and very slowly certain other chymotrypsin substrates. This activity increased 10-fold in E. coli expressing heat-shock proteins constitutively and 100-fold in cells expressing HslV and HslU from a high copy plasmid. Although HslV and HslU could be coimmunoprecipitated from cell extracts of both strains with an anti-HslV antibody, these two components were readily separated by various types of chromatography. ATP stimulated peptidase activity up to 150-fold, whereas other nucleoside triphosphates, a nonhydrolyzable ATP analog, ADP, or AMP had no effect. Peptidase activity was blocked by the anti-HslV antibody and by several types of inhibitors of the eukaryotic proteasome (a threonine protease) but not by inhibitors of other classes of proteases. Unlike eukaryotic proteasomes, the HslVU protease lacked tryptic-like and peptidyl-glutamyl-peptidase activities. Electron micrographs reveal ring-shaped particles similar to en face images of the 20S proteasome or the ClpAP protease. Thus, HslV and HslU appear to form a complex in which ATP hydrolysis by HslU is essential for peptide hydrolysis by the proteasome-like component HslV.
Resumo:
Heat shock protein gp96 primes class I restricted cytotoxic T cells against antigens present in the cells from which it was isolated. Moreover, gp96 derived from certain tumors functions as an effective vaccine, causing complete tumor regressions in in vivo tumor challenge protocols. Because tumor-derived gp96 did not differ from gp96 isolated from normal tissues, a role for gp96 as a peptide carrier has been proposed. To test this hypothesis, we analyzed whether such an association of antigenic peptides with gp96 occurs in a well-defined viral model system. Here we present the full characterization of an antigenic peptide that endogenously associates with the stress protein gp96 in cells infected with vesicular stomatitis virus (VSV). This peptide is identical to the immunodominant peptide of VSV, which is also naturally presented by H-2Kb major histocompatibility complex class I molecules. This peptide associates with gp96 in VSV-infected cells regardless of the major histocompatibility com- plex haplotype of the cell. Our observations provide a biochemical basis for the vaccine function of gp96.
Resumo:
In addition to the five 70-kDa heat shock proteins (HSP70) common to germ cells and somatic tissues of mammals, spermatogenic cells synthesize HSP70-2 during meiosis. To determine if this unique stress protein has a critical role in meiosis, we used gene-targeting techniques to disrupt Hsp70-2 in mice. Male mice homozygous for the mutant allele (Hsp70-2 -/-) did not synthesize HSP70-2, lacked postmeiotic spermatids and mature sperm, and were infertile. However, neither meiosis nor fertility was affected in female Hsp70-2 -/- mice. We previously found that HSP70-2 is associated with synaptonemal complexes in the nucleus of meiotic spermatocytes from mice and hamsters. While synaptonemal complexes assembled in Hsp70-2 -/- spermatocytes, structural abnormalities became apparent in these cells by late prophase, and development rarely progressed to the meiotic divisions. Furthermore, analysis of nuclei and genomic DNA indicated that the failure of meiosis in Hsp70-2 -/- mice was coincident with a dramatic increase in spermatocyte apoptosis. These results suggest that HSP70-2 participates in synaptonemal complex function during meiosis in male germ cells and is linked to mechanisms that inhibit apoptosis.
Resumo:
Recombination repair protein 1 (Rrp1) includes a C-terminal region homologous to several DNA repair proteins, including Escherichia coli exonuclease III and human APE, that repair oxidative and alkylation damage to DNA. The nuclease activities of Rrp1 include apurinic/apyrimidinic endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-exonuclease. As shown previously, the C-terminal nuclease region of Rrp1 is sufficient to repair oxidative- and alkylation-induced DNA damage in repair-deficient E. coli mutants. DNA strand-transfer and single-stranded DNA renaturation activities are associated with the unique N-terminal region of Rrp1, which suggests possible additional functions that include recombinational repair or homologous recombination. By using the Drosophila w/w+ mosaic eye system, which detects loss of heterozygosity as changes in eye pigmentation, somatic mutation and recombination frequencies were determined in transgenic flies overexpressing wild-type Rrp1 protein from a heat-shock-inducible transgene. A large decrease in mosaic clone frequency is observed when Rrp1 overexpression precedes treatment with gamma-rays, bleomycin, or paraquat. In contrast, Rrp1 overexpression does not alter the spot frequency after treatment with the alkylating agents methyl methanesulfonate or methyl nitrosourea. A reduction in mosaic clone frequency depends on the expression of the Rrp1 transgene and on the nature of the induced DNA damage. These data suggest a lesion-specific involvement of Rrp1 in the repair of oxidative DNA damage.
Resumo:
The heat shock protein Hsp90 is known as an essential component of several signal transduction pathways and has now been identified as an essential host factor for hepatitis B virus replication. Hsp90 interacts with the viral reverse transcriptase to facilitate the formation of a ribonucleoprotein (RNP) complex between the polymerase and an RNA ligand. This RNP complex is required early in replication for viral assembly and initiation of DNA synthesis through a protein-priming mechanism. These results thus invoke a role for the Hsp90 pathway in the formation of an RNP.
Resumo:
In search of proteins which interact with activated steroid hormone receptors, we screened a human liver lambda gt11 expression library with the glucocorticoid receptor. We identified and cloned a cDNA sequence of 1322 bp that encodes a protein of 274 aa. This protein consists predominantly of hydrophilic amino acids and contains a putative bipartite nuclear localization signal. The in vitro translated receptor-associating protein runs in SDS/polyacrylamide gels with an apparent molecular mass of 46 kDa. By use of the bacterially expressed fusion protein with glutathione S-transferase we have found that interaction is not limited to the glucocorticoid receptor but included other nuclear receptors--most notably, the estrogen and thyroid receptors. Binding also occurs with the glucocorticoid receptor complexed with the antiglucocorticoid RU 38486, with the estrogen receptor complexed with the antiestrogen 4-hydroxytamoxifen or ICI 164,384, and even with receptors not complexed with ligand. Association with steroid hormone receptors depends on prior receptor activation--i.e., release from heat shock proteins. The sequence identified here appears to be a general partner protein for nuclear hormone receptors, with the gene being expressed in a variety of mammalian tissues.
Resumo:
Two interacting heat shock cognate proteins in the lumen of the yeast endoplasmic reticulum (ER), Sec63p and BiP (Kar2p), are required for posttranslational translocation of yeast alpha-factor precursor in vitro. To investigate the role of these proteins in cotranslational translocation, we examined the import of invertase into wild-type, sec63, and kar2 mutant yeast membranes. We found that Sec63p and Kar2p are necessary for both co- and posttranslational translocation in yeast. Several kar2 mutants, one of which had normal ATPase activity, were defective in cotranslational translocation of invertase. We conclude that the requirement for BiP/Kar2p, which is not seen in a reaction reconstituted with pure mammalian membrane proteins [Görlich, D. & Rapoport, T.A. (1993) Cell 75, 615-630], is not due to a distinction between cotranslational translocation in mammalian cells and posttranslational translocation in yeast cells.
Resumo:
The O2 sensitivity of protein expression was assessed in hepatocytes from the western painted turtle. Anoxic cells consistently expressed proteins of 83.0, 70.4, 42.5, 35.3, and 16.1 kDa and suppressed proteins of 63.7, 48.2, 36.9, 29.5, and 17.7 kDa. Except for the 70.4-kDa protein, this pattern was absent during aerobic incubation with 2 mM NaCN, suggesting a specific requirement for O2. Aerobic incubation with Co2+ or Ni2+ increased expression of the 42.5-, 35.3-, and 16.1-kDa protein bands which was diminished with the heme synthesis inhibitor 4,6-dioxoheptanoic acid. Proteins suppressed in anoxia were also suppressed during aerobic incubation with Co2+ or Ni2+ but this was not relieved by 4,6-dioxoheptanoic acid. The anoxia- and Co2+/Ni2+-induced expression of the 42.5-, 35.3-, and 16.1-kDa protein bands was antagonized by 10% CO; however, with the exception of the 17.7-kDa protein, this was not found for any of the O2- or Co2+/Ni2+-suppressed proteins. Anoxia-induced proteins were compared with proteins expressed during heat shock. Heat shock proteins appeared at 90.2, 74.8, 63.4, 25, and 15.5 kDa and were of distinct molecular masses compared with the anoxia-induced proteins. These results suggest that O2-sensing mechanisms are active in the control of protein expression and suppression during anoxia and that, in the case of the 42.5-, 35.3-, 17.7-, and 16.1-kDa proteins, a conformational change in a ferro-heme protein is involved in transducing the O2 signal.
Resumo:
Plant defense against microbial pathogens and herbivores relies heavily on the induction of defense proteins and low molecular weight antibiotics. The signals between perception of the aggression, gene activation, and the subsequent biosynthesis of secondary compounds are assumed to be pentacylic oxylipin derivatives. The rapid, but transient, synthesis of cis-jasmonic acid was demonstrated after insect attack on a food plant and by microbial elicitor addition to plant suspension cultures. This effect is highly specific and not caused by a number of environmental stresses such as light, heavy metals, or cold or heat shock. Elicitation of Eschscholtzia cell cultures also led to a rapid alkalinization of the growth medium prior to jasmonate formation. Inhibition of this alkalinization process by the protein kinase inhibitor staurosporine also inhibited jasmonate formation. The induction of specific enzymes in the benzo[c]phenanthridine alkaloid pathway leading to the antimicrobial sanguinarine was induced to a qualitatively and quantitatively similar extent by fungal elicitor, methyl jasmonate, and its linolenic acid-derived precursor 12-oxophytodienoic acid. It is herein proposed that a second oxylipid cascade may exist in plants starting from linoleic acid via 15,16-dihydro-12-oxophytodienoic acid to 9,10-dihydrojasmonate. Experiments with synthetic trihomojasmonate demonstrated that beta-oxidation is not a prerequisite for biological activity and that 12-oxophytodienoic acid and derivatives are most likely fully active as signal transducers. Octadecanoic acid-derived compounds are essential elements in modulating the synthesis of antibiotic compounds and are thus integral to plant defense.
Resumo:
O operon groESL de C. crescentus apresenta dupla regulação. A indução deste operon por choque térmico é dependente do fator sigma de choque térmico σ32. A temperaturas fisiológicas, a expressão de groESL apresenta regulação temporal durante o ciclo celular da bactéria e o controle envolve a proteína repressora HrcA e o elemento CIRCE (controlling inverted repeat of chaperonin expression). Para estudar a atividade da proteína repressora in vitro, produzimos e purificamos de E. coli a HrcA de C. creseentus contendo uma cauda de histidinas e a ligação especifica ao elemento CIRCE foi analisada em ensaios de migração retardada em gel de poliacrilamida (EMRGP). A quantidade de DNA retardada pela ligação a HrcA aumentou significativamente na presença de GroES/GroEL, sugerindo que estas proteínas modulam a atividade de HrcA. Corroboração desta modulação foi obtida analisando fusões de transcrição da região regulatória de groESL com o gene lacZ, em células de C. crescentus produzindo diferentes quantidades de GroES/EL. HrcA contendo as substituições Pro81 AJa e Arg87Ala, aminoácidos que se localizam no domínio putativo de ligação ao DNA da proteína, mostraram ser deficientes na ligação a CIRCE, tanto in vitro como in vivo. Em adição, HrcA Ser56Ala expressa na mesma célula juntamente com a proteína selvagem produziu um fenótipo dominante-negativo, indicando que a HrcA de C. crescentus liga-se a CIRCE como um oligômero, provavelmente um dímero. As tentativas de obtenção de mutantes nulos para os genes groESL ou dnaKJ falharam, indicando que as proteínas GroES/GroEL e DnaK/DnaJ são essenciais em C. crescentus, mesmo a temperaturas normais. Foram então construídas no laboratório as linhagens mutantes condicionais SG300 e SG400 de C. crescentus, onde a expressão de groESL e de dnaKJ, respectivamente, está sob controle de um promotor induzido por xilose (PxyIX). Estas linhagens foram caracterizadas quanto á sua morfologia em condições permissivas ou restritivas, assim como quanto à capacidade de sobrevivência frente a vários tipos de estresse. As células da linhagem SG300, exauridas de GroES/GroEL, são resistentes ao choque térmico a 42°C e são capazes de adquirir alguma termotolerância. Entretanto, estas células são sensíveis aos estresses oxidativo, salino e osmótico. As células da linhagem SG400, exauridas de DnaKlJ, são sensíveis ao choque térmico, à exposição a etanol e ao congelamento, e são incapazes de adquirir termotolerância. Além disso, tanto as células exauridas de GroES/GroEL quanto as exauridas de DnaK/DnaJ apresentam problemas na sua morfologia. As células de SG300 exauridas de GroES/GroEL formam filamentos longos que possuem constrições fundas e irregulares. As células de SG400 exauridas de DnaK/DnaJ são apenas um pouco mais alongadas que as células pré-divisionais selvagens e a maioria das células não possuem septo. Estas observações indicam bloqueio da divisão celular, que deve ocorrer em diferentes estágios em cada linhagem.
Resumo:
Tese de doutoramento, Ciências do Mar, Universidade de Lisboa, Faculdade de Ciências, 2016