947 resultados para glutamatergic receptors
Resumo:
Background: The current treatments for anxiety disorders and depression have multiple adverse effects in addition to a delayed onset of action, which has prompted efforts to find new substances with potential activity in these disorders. Citrus aurantium was chosen based on ethnopharmacological data because traditional medicine refers to the Citrus genus as useful in diminishing the symptoms of anxiety or insomnia, and C. aurantium has more recently been proposed as an adjuvant for antidepressants. In the present work, we investigated the biological activity underlying the anxiolytic and antidepressant effects of C. aurantium essential oil (EO), the putative mechanism of the anxiolytic-like effect, and the neurochemical changes in specific brain structures of mice after acute treatment. We also monitored the mice for possible signs of toxicity after a 14-day treatment.Methods: The anxiolytic-like activity of the EO was investigated in a light/dark box, and the antidepressant activity was investigated in a forced swim test. Flumazenil, a competitive antagonist of benzodiazepine binding, and the selective 5-HT1A receptor antagonist WAY100635 were used in the experimental procedures to determine the mechanism of action of the EO. To exclude false positive results due to motor impairment, the mice were submitted to the rotarod test.Results: The data suggest that the anxiolytic-like activity observed in the light/dark box procedure after acute (5 mg/kg) or 14-day repeated (1 mg/kg/day) dosing was mediated by the serotonergic system (5-HT1A receptors). Acute treatment with the EO showed no activity in the forced swim test, which is sensitive to antidepressants. A neurochemical evaluation showed no alterations in neurotransmitter levels in the cortex, the striatum, the pons, and the hypothalamus. Furthermore, no locomotor impairment or signs of toxicity or biochemical changes, except a reduction in cholesterol levels, were observed after treatment with the EO.Conclusion: This work contributes to a better understanding of the biological activity of C. aurantium EO by characterizing the mechanism of action underlying its anxiolytic-like activity. © 2013 Costa et al; licensee BioMed Central Ltd.
Resumo:
Background: Chronic inflammation and gastric carcinogenesis show a close association, so gene polymorphisms that modify the intensity of the inflammatory response may contribute to variations in gastric cancer risk. Aims: The purpose of this study was to investigate the combined effect of the pro- and anti-inflammatory cytokines and toll-like receptors polymorphisms on the chronic gastritis and gastric cancer risk in a Brazilian population sample. Methods: We evaluated 669 DNA samples (200 of gastric cancer [GC], 229 of chronic gastritis [CG], and 240 of healthy individuals [C]). Ten polymorphisms were genotyped: IL-1RN and TLR2 -196 to -174 del using the allele-specific PCR method and TNF-A (rs1800629; rs1799724), TNF-B (rs909253), IL-8 (rs4073; rs2227532), IL-10 (rs1800872) and TLR4 (rs4986790; rs4986791) using PCR-RFLP. Results: Polymorphisms TNF-A-308G/A, IL-8-251A/T, TNF-B + 252A/G and TLR4 + 1196C/T were not associated with risk of any gastric lesion. However, an association with increased risk for GC was observed for polymorphisms IL-1RNL/2 (p < 0.001), TNF-A-857C/T (p = 0.022), IL-8-845T/C (p < 0.001), IL-10-592C/A (p < 0.001), TLR2ins/del (p < 0.001), and TLR4 + 896A/G (p = 0.033). In CG, an association was observed only with polymorphisms IL-1RNL/2 and IL-10-592A/C (p < 0.001 for both). A combined analysis of these six polymorphisms associated with GC revealed a profile with two to four combined genotypes which confer a higher risk of gastric carcinogenesis, with an OR increased 2.95-fold to 50.4-fold, highlighting the combinations IL-1RN2/TNF-A-857T/IL-8-845C, IL-1RN2/IL-8-845C/TLR2del, IL-1RN2/IL-10-592A/TLR4 + 896G, IL-10-592A/TLR2del/ TLR4 + 896G, and IL-1RN2/TNFA-857T/IL8-845C/TLR2del. Conclusions: Our findings evidenced that the combined effect of polymorphisms in genes involved in the inflammatory process may potentiate the risk of gastric cancer, thus emphasizing the importance of evaluating multiple polymorphisms together. © 2012 Springer Science+Business Media New York.
Resumo:
Background and Purpose Bone resorption induced by interleukin-1β (IL-1β) and tumour necrosis factor (TNF-α) is synergistically potentiated by kinins, partially due to enhanced kinin receptor expression. Inflammation-induced bone resorption can be impaired by IL-4 and IL-13. The aim was to investigate if expression of B1 and B2 kinin receptors can be affected by IL-4 and IL-13. Experimental Approach We examined effects in a human osteoblastic cell line (MG-63), primary human gingival fibroblasts and mouse bones by IL-4 and IL-13 on mRNA and protein expression of the B1 and B2 kinin receptors. We also examined the role of STAT6 by RNA interference and using Stat6-/- mice. Key Results IL-4 and IL-13 decreased the mRNA expression of B1 and B2 kinin receptors induced by either IL-1β or TNF-α in MG-63 cells, intact mouse calvarial bones or primary human gingival fibroblasts. The burst of intracellular calcium induced by either bradykinin (B2 agonist) or des-Arg10-Lys-bradykinin (B1 agonist) in gingival fibroblasts pretreated with IL-1β was impaired by IL-4. Similarly, the increased binding of B1 and B2 ligands induced by IL-1β was decreased by IL-4. In calvarial bones from Stat6-deficient mice, and in fibroblasts in which STAT6 was knocked down by siRNA, the effect of IL-4 was decreased. Conclusions and Implications These data show, for the first time, that IL-4 and IL-13 decrease kinin receptors in a STAT6-dependent mechanism, which can be one important mechanism by which these cytokines exert their anti-inflammatory effects and impair bone resorption. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.
Resumo:
Cancer pain is an important clinical problem and may not respond satisfactorily to the current analgesic therapy. We have characterized a novel and potent analgesic peptide, crotalphine, from the venom of the South American rattlesnake Crotalus durissus terrificus. In the present work, the antinociceptive effect of crotalphine was evaluated in a rat model of cancer pain induced by intraplantar injection of Walker 256 carcinoma cells. Intraplantar injection of tumor cells caused the development of hyperalgesia and allodynia, detected on day 5 after tumor cell inoculation. Crotalphine (6 μg/kg), administered p.o., blocked both phenomena. The antinociceptive effect was detected 1 h after treatment and lasted for up to 48 h. Intraplantar injection of nor-binaltorphimine (50 g/paw), a selective antagonist of κ-opioid receptors, antagonized the antinociceptive effect of the peptide, whereas N,N-diallyl-Tyr-Aib-Phe-Leu (ICI 174,864, 10 μg/paw), a selective antagonist of δ-opioid receptors, partially reversed this effect. On the other hand, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP, 20 g/paw), an antagonist of μ-opioid receptors, did not modify crotalphine-induced antinociception. These data indicate that crotalphine induces a potent and long lasting opioid-mediated antinociception in cancer pain. © 2013 Elsevier Inc.
Resumo:
FSH induces expansion of bovine cumulus-oocyte complexes (COCs) in cattle, which can be enhanced by oocyte-secreted factors (OSFs). In this study it was hypothesised that FSH stimulates COC expansion in part from direct stimulation of the epidermal growth factor (EGF)-like ligands amphiregulin (AREG), epiregulin (EREG) and betacellulin (BTC), but also in part through regulation of OSFs or their receptors in cumulus cells. Bovine COCs were cultured in defined medium with graded doses of FSH. In the absence of FSH, COCs did not expand. FSH caused cumulus expansion, and increased the abundance of AREG and EREG mRNA in a time- and dose-dependent manner, but decreased BTC mRNA levels. FSH had modest stimulatory effects on the levels of mRNA encoding the bone morphogenetic protein 15 (BMP15) receptor, BMPR1B, in cumulus cells, but did not alter mRNA expression of the growth and differentiation factor 9 (GDF9) receptor, TGFBR1. More interestingly, FSH dramatically stimulated levels of mRNA encoding two receptors for fibroblast growth factors (FGF), FGFR2C and FGFR3C, in cumulus cells. FSH also stimulated mRNA expression of FGFR1B, but not of FGFR2B in cumulus cells. Based on dose-response studies, FGFR3C was the receptor most sensitive to the influence of FSH. This study demonstrates that FSH stimulates the expression of EGF-like factors in bovine cumulus cells, and provides evidence that FSH differently regulates the expression of distinct receptors for OSFs in cumulus cells. © CSIRO 2013.
Resumo:
The aim of the present study was to detect progesterone receptors (A and B isoforms), α and β estrogen receptors, luteinizing hormone receptors and aromatase cytochrome P450 enzymes in the corpus luteum of Nelore (Bos taurus indicus) cows using immunohistochemistry. The estrous cycles of 16 Nelore cows were synchronized, and luteal samples were collected via an incision into the vaginal vault. Samples were collected during specific days of the estrous cycle (days 6, 10, 15 and 18) and 24. h after circulating progesterone dropped, after luteolysis had occurred. After each biopsy was taken, all animals were resynchronized so that each biopsy was performed during a different estrous cycle. Our results showed that the concentration of studied proteins vary throughout the bovine estrous cycle. The highest concentration of α and β estrogen receptors and the highest concentration of plasma progesterone were both observed on days 10 and 15 of the estrous cycle. The highest concentration of progesterone receptors was observed on days 6 and 10 of the estrous cycle, and the most intense immunostaining for cytochrome P450 aromatase enzymes was observed on day 10 of the estrous cycle. The highest score of cells with plasma membrane immunostaining for LH receptors was observed on day 15 of the estrous cycle. In conclusion, this study demonstrates the varying concentrations of specific proteins within the corpus luteum of Nelore cows during the estrous cycle. This finding suggests that these receptors and enzymes, and their interactions, are important in regulating luteal viability. © 2013 Elsevier B.V.
Resumo:
Chronic ethanol intake is associated with sex hormone disturbances, and it is well known that melatonin plays a key role in regulating several reproductive processes. We report the effects of ethanol intake and melatonin treatment (at doses of 100. μg/100. g. BW/day) on sex hormones and steroid receptors in the ovaries, oviducts and uteri of ethanol-preferring rats. After 150 days of treatment, animals were euthanized, and tissue samples were harvested to evaluate androgen, estrogen, progesterone and melatonin receptor subunits (AR, ER-α and ER-β, PRA, PRB and MT1R, respectively). Melatonin decreased estradiol (E2) and increased progesterone (P4) and 6-sulfatoxymelatonin (6-STM), while an ethanol-melatonin combination reduced both P4 and E2. Ovarian AR was not influenced by either treatment, and oviduct AR was reduced after ethanol-melatonin combination. Oviduct ER-α, ER-β and uterine ER-β were down-regulated by either ethanol or melatonin. Conversely, ovarian PRA and PRB were positively regulated by ethanol and ethanol-melatonin combination, whereas PRA was down-regulated in the uterus and oviduct after ethanol consumption. MT1R was increased in ovaries and uteri of melatonin-treated rats. Ethanol and melatonin exert opposite effects on E2 and P4, and they differentially regulate the expression of sex steroid receptors in female reproductive tissues. © 2013 Elsevier Inc.
Resumo:
We investigated the participation of A1 or A2 receptors in the gonadotrope and their role in the regulation of LH and FSH secretion in adult rat hemipituitary preparations, using adenosine analogues. A dose-dependent inhibition of LH and FSH secretion was observed after the administration of graded doses of the R-isomer of phenylisopropyladenosine (R-PIA; 1 nM, 10 nM, 100 nM, 1 µM and 10 µM). The effect of R-PIA (10 nM) was blocked by the addition of 8-cyclopentyltheophylline (CPT), a selective A1 adenosine receptor antagonist, at the dose of 1 µM. The addition of an A2 receptor-specific agonist, 5-N-methylcarboxamidoadenosine (MECA), at the doses of 1 nM to 1 µM had no significant effect on LH or FSH secretion, suggesting the absence of this receptor subtype in the gonadotrope. However, a sharp inhibition of the basal secretion of these gonadotropins was observed after the administration of 10 µM MECA. This effect mimicked the inhibition induced by R-PIA, supporting the hypothesis of the presence of A1 receptors in the gonadotrope. R-PIA (1 nM to 1 µM) also inhibited the secretion of LH and FSH induced by phospholipase C (0.5 IU/ml) in a dose-dependent manner. These results suggest the presence of A1 receptors and the absence of A2 receptors in the gonadotrope. It is possible that the inhibition of LH and FSH secretion resulting from the activation of A1 receptors may have occurred independently of the increase in membrane phosphoinositide synthesis.
Resumo:
The influence of melatonin on the developmental pattern of functional nicotinic acetylcholine receptors was investigated in embryonic 8-day-old chick retinal cells in culture. The functional response to acetylcholine was measured in cultured retina cells by microphysiometry. The maximal functional response to acetylcholine increased 2.7 times between the 4th and 5th day in vitro (DIV4, DIV5), while the Bmax value for 125I-a-bungarotoxin was reduced. Despite the presence of a8-like immunoreactivity at DIV4, functional responses mediated by a-bungarotoxin-sensitive nicotinic acetylcholine receptors were observed only at DIV5. Mecamylamine (100 µM) was essentially without effect at DIV4 and DIV5, while dihydro-ß-erythroidine (10-100 µM) blocked the response to acetylcholine (3.0 nM-2.0 µM) only at DIV4, with no effect at DIV5. Inhibition of melatonin receptors with the antagonist luzindole, or melatonin synthesis by stimulation of D4 dopamine receptors blocked the appearance of the a-bungarotoxin-sensitive response at DIV5. Therefore, a-bungarotoxin-sensitive receptors were expressed in retinal cells as early as at DIV4, but they reacted to acetylcholine only after DIV5. The development of an a-bungarotoxin-sensitive response is dependent on the production of melatonin by the retinal culture. Melatonin, which is produced in a tonic manner by this culture, and is a key hormone in the temporal organization of vertebrates, also potentiates responses mediated by a-bungarotoxin-sensitive receptors in rat vas deferens and cerebellum. This common pattern of action on different cell models that express a-bungarotoxin-sensitive receptors probably reflects a more general mechanism of regulation of these receptors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)