918 resultados para glomerular heterogeneity
Resumo:
Temperate Australia sits between the heat engine of the tropics and the cold Southern Ocean, encompassing a range of rainfall regimes and falling under the influence of different climatic drivers. Despite this heterogeneity, broad-scale trends in climatic and environmental change are evident over the past 30 ka. During the early glacial period (∼30–22 ka) and the Last Glacial Maximum (∼22–18 ka), climate was relatively cool across the entire temperate zone and there was an expansion of grasslands and increased fluvial activity in regionally important Murray–Darling Basin. The temperate region at this time appears to be dominated by expanded sea ice in the Southern Ocean forcing a northerly shift in the position of the oceanic fronts and a concomitant influx of cold water along the southeast (including Tasmania) and southwest Australian coasts. The deglacial period (∼18–12 ka) was characterised by glacial recession and eventual disappearance resulting from an increase in temperature deduced from terrestrial records, while there is some evidence for climatic reversals (e.g. the Antarctic Cold Reversal) in high resolution marine sediment cores through this period. The high spatial density of Holocene terrestrial records reveals an overall expansion of sclerophyll woodland and rainforest taxa across the temperate region after ∼12 ka, presumably in response to increasing temperature, while hydrological records reveal spatially heterogeneous hydro-climatic trends. Patterns after ∼6 ka suggest higher frequency climatic variability that possibly reflects the onset of large scale climate variability caused by the El Niño/Southern Oscillation.
Resumo:
Background: Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult owing to species biology and behavioural characteristics. The design of robust sampling programmes should be based on an underlying statistical distribution that is sufficiently flexible to capture variations in the spatial distribution of the target species. Results: Comparisons are made of the accuracy of four probability-of-detection sampling models - the negative binomial model,1 the Poisson model,1 the double logarithmic model2 and the compound model3 - for detection of insects over a broad range of insect densities. Although the double log and negative binomial models performed well under specific conditions, it is shown that, of the four models examined, the compound model performed the best over a broad range of insect spatial distributions and densities. In particular, this model predicted well the number of samples required when insect density was high and clumped within experimental storages. Conclusions: This paper reinforces the need for effective sampling programs designed to detect insects over a broad range of spatial distributions. The compound model is robust over a broad range of insect densities and leads to substantial improvement in detection probabilities within highly variable systems such as grain storage.
Resumo:
Instances of parallel ecotypic divergence where adaptation to similar conditions repeatedly cause similar phenotypic changes in closely related organisms are useful for studying the role of ecological selection in speciation. Here we used a combination of traditional and next generation genotyping techniques to test for the parallel divergence of plants from the Senecio lautus complex, a phenotypically variable groundsel that has adapted to disparate environments in the South Pacific. Phylogenetic analysis of a broad selection of Senecio species showed that members of the S. lautus complex form a distinct lineage that has diversified recently in Australasia. An inspection of thousands of polymorphisms in the genome of 27 natural populations from the S. lautus complex in Australia revealed a signal of strong genetic structure independent of habitat and phenotype. Additionally, genetic differentiation between populations was correlated with the geographical distance separating them, and the genetic diversity of populations strongly depended on geographical location. Importantly, coastal forms appeared in several independent phylogenetic clades, a pattern that is consistent with the parallel evolution of these forms. Analyses of the patterns of genomic differentiation between populations further revealed that adjacent populations displayed greater genomic heterogeneity than allopatric populations and are differentiated according to variation in soil composition. These results are consistent with a process of parallel ecotypic divergence in face of gene flow.
Resumo:
Objective: To calculate pooled risk estimates of the association between pigmentary characteristics and basal cell carcinoma (BCC) of the skin. Methods: We searched three electronic databases and reviewed the reference lists of the retrieved articles until July 2012 to identify eligible epidemiologic studies. Eligible studies were those published in between 1965 and July 2012 that permitted quantitative assessment of the association between histologically-confirmed BCC and any of the following characteristics: hair colour, eye colour, skin colour, skin phototype, tanning and burning ability, and presence of freckling or melanocytic nevi. We included 29 studies from 2236 initially identified. We calculated summary odds ratios (ORs) using weighted averages of the log OR, using random effects models. Results: We found strongest associations with red hair (OR 2.02; 95% CI: 1.68, 2.44), fair skin colour (OR 2.11; 95% CI: 1.56, 2.86), and having skin that burns and never tans (OR 2.03; 95% CI: 1.73, 2.38). All other factors had weaker but positive associations with BCC, with the exception of freckling of the face in adulthood which showed no association. Conclusions: Although most studies report risk estimates that are in the same direction, there is significant heterogeneity in the size of the estimates. The associations were quite modest and remarkably similar, with ORs between about 1.5 and 2.5 for the highest risk level for each factor. Given the public health impact of BCC, this meta-analysis will make a valuable contribution to our understanding of BCC.
Resumo:
Despite the Revised International Prognostic Index's (R-IPI) undoubted utility in diffuse large B-cell lymphoma (DLBCL), significant clinical heterogeneity within R-IPI categories persists. Emerging evidence indicates that circulating host immunity is a robust and R-IPI independent prognosticator, most likely reflecting the immune status of the intratumoral microenvironment. We hypothesized that direct quantification of immunity within lymphomatous tissue would better permit stratification within R-IPI categories. We analyzed 122 newly diagnosed consecutive DLBCL patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) chemo-immunotherapy. Median follow-up was 4 years. As expected, the R-IPI was a significant predictor of outcome with 5-year overall survival (OS) 87% for very good, 87% for good, and 51% for poor-risk R-IPI scores (P < 0.001). Consistent with previous reports, systemic immunity also predicted outcome (86% OS for high lymphocyte to monocyte ratio [LMR], versus 63% with low LMR, P = 0.01). Multivariate analysis confirmed LMR as independently prognostic. Flow cytometry on fresh diagnostic lymphoma tissue, identified CD4+ T-cell infiltration as the most significant predictor of outcome with ≥23% infiltration dividing the cohort into high and low risk groups with regard to event-free survival (EFS, P = 0.007) and OS (P = 0.003). EFS and OS were independent of the R-IPI and LMR. Importantly, within very good/good R-IPI patients, CD4+ T-cells still distinguished patients with different 5 year OS (high 96% versus low 63%, P = 0.02). These results illustrate the importance of circulating and local intratumoral immunity in DLBCL treated with R-CHOP.
Resumo:
A loss of function mutation in the TRESK K2P potassium channel (KCNK18), has recently been linked with typical familial migraine with aura. We now report the functional characterisation of additional TRESK channel missense variants identified in unrelated patients. Several variants either had no apparent functional effect, or they caused a reduction in channel activity. However, the C110R variant was found to cause a complete loss of TRESK function, yet is present in both sporadic migraine and control cohorts, and no variation in KCNK18 copy number was found. Thus despite the previously identified association between loss of TRESK channel activity and migraine in a large multigenerational pedigree, this finding indicates that a single non-functional TRESK variant is not alone sufficient to cause typical migraine and highlights the genetic complexity of this disorder. Migraine is a common, disabling neurological disorder with a genetic, environmental and in some cases hormonal component. It is characterized by attacks of severe, usually unilateral and throbbing headache, can be accompanied by nausea, vomiting and photophobia and is clinically divided into two main subtypes, migraine with aura (MA) when a migraine is accompanied by transient and reversible focal neurological symptoms and migraine without aura (MO)1. The multifactorial and clinical heterogeneity of the disorder have considerably hindered the identification of common migraine susceptibility genes and most of our current understanding comes from the studies of familial hemiplegic migraine (FHM), a rare monogenic autosomal dominant form of MA2. So far, the three susceptibility genes that have been convincingly identified in FHM families all encode ion channels or transporters: CACNA1A encoding the α1 subunit of the Cav2.1 calcium channel3, SCN1A encoding the Nav1.1 sodium channel4 and ATP1A2 encoding the α2 subunit of the Na+/K+ pump5. It is believed that mutations in these genes may lead to increased efflux of glutamate and potassium in the synapse and thereby cause migraine by rendering the brain more susceptible to cortical spreading depression (CSD)6 which is thought to play a role in initiating a migraine attack7,8. However, these genes have not to date been implicated in common forms of migraine9. Nevertheless, current opinion suggests that typical migraine, like FHM, is also disorder of neuronal excitability, ion homeostasis and neurotransmitter release10,11,12. Mutations in the SLC4A4 gene encoding the sodium-bicarbonate cotransporter NBCe1, have recently been implicated in several different forms of migraine13, and a variety of genes involved in glutamate homeostasis (PGCP, MTDH14 and LRP115) and a cation channel (TRPM8)15 have also recently been implicated in migraine via genome-wide association studies. Ion channels are therefore highly likely to play an important role in the pathogenesis of typical migraine. TRESK (KCNK18), is a member of the two-pore domain (K2P) family of potassium channels involved in the control of cellular electrical excitability16. Regulation of TRESK activity by the calcium-dependent phosphatase calcineurin17, as well as its expression in dorsal root ganglia (DRG)18 and trigeminal ganglia (TG)19,20 has led to a proposed role for this channel in a variety of pain pathways. In a recent study, a frameshift mutation (F139Wfsx24) in TRESK was identified in a large multigenerational pedigree where it co-segregated perfectly with typical MA and a significant genome-wide linkage LOD score of 3.0. Furthermore, functional analysis revealed that this mutation caused a complete loss of TRESK function and that the truncated subunit was also capable of down regulating wild-type channel function. This therefore highlighted KCNK18 as potentially important candidate gene and suggested that TRESK dysfunction might play a possible role in the pathogenesis of familial migraine with visual aura20. Additional screening for KCNK18 mutations in unrelated sporadic migraine and control cohorts also identified a number of other missense variants; R10G, A34V, C110R, S231P and A233V20. The A233V variant was found only in the control cohort, whilst A34V was identified in a single Australian migraine proband for which family samples were not available, but it was not detected in controls. By contrast, the R10G, C110R, and S231P variants were found in both migraineurs and controls in both cohorts. In this study, we have investigated the functional effect of these variants to further probe the potential association of TRESK dysfunction with typical migraine.
Resumo:
Background: Multiple sclerosis (MS) is the most common cause of chronic neurologic disability beginning in early to middle adult life. Results from recent genome-wide association studies (GWAS) have substantially lengthened the list of disease loci and provide convincing evidence supporting a multifactorial and polygenic model of inheritance. Nevertheless, the knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed. Methods: We used a discovery GWAS dataset (8,844 samples, 2,124 cases and 6,720 controls) and a multi-step logistic regression protocol to identify novel genetic associations. The emerging genetic profile included 350 independent markers and was used to calculate and estimate the cumulative genetic risk in an independent validation dataset (3,606 samples). Analysis of covariance (ANCOVA) was implemented to compare clinical characteristics of individuals with various degrees of genetic risk. Gene ontology and pathway enrichment analysis was done using the DAVID functional annotation tool, the GO Tree Machine, and the Pathway-Express profiling tool. Results: In the discovery dataset, the median cumulative genetic risk (P-Hat) was 0.903 and 0.007 in the case and control groups, respectively, together with 79.9% classification sensitivity and 95.8% specificity. The identified profile shows a significant enrichment of genes involved in the immune response, cell adhesion, cell communication/ signaling, nervous system development, and neuronal signaling, including ionotropic glutamate receptors, which have been implicated in the pathological mechanism driving neurodegeneration. In the validation dataset, the median cumulative genetic risk was 0.59 and 0.32 in the case and control groups, respectively, with classification sensitivity 62.3% and specificity 75.9%. No differences in disease progression or T2-lesion volumes were observed among four levels of predicted genetic risk groups (high, medium, low, misclassified). On the other hand, a significant difference (F = 2.75, P = 0.04) was detected for age of disease onset between the affected misclassified as controls (mean = 36 years) and the other three groups (high, 33.5 years; medium, 33.4 years; low, 33.1 years). Conclusions: The results are consistent with the polygenic model of inheritance. The cumulative genetic risk established using currently available genome-wide association data provides important insights into disease heterogeneity and completeness of current knowledge in MS genetics.
Resumo:
Introduction Gene expression profiling has enabled us to demonstrate the heterogeneity of breast cancers. The potential of a tumour to grow and metastasise is partly dependant on its ability to initiate angiogenesis or growth and remodelling of new blood vessels, usually from a pre-existing vascular network, to ensure delivery of oxygen, nutrients, and growth factors to rapidly dividing transformed cells along with access to the systemic circulation. Cell–cell signalling of semaphorin ligands through interaction with their plexin receptors is important for the homeostasis and morphogenesis of many tissues and has been widely studied for a role in neural connectivity, cancer, cell migration and immune responses. This study investigated the role of four semaphorin/plexin signalling genes in human breast cancers in vivo and in vitro. Materials and methods mRNA was extracted from formalin fixed paraffin embedded archival breast invasive ductal carcinoma tissue samples of progressive grades (grades I–III) and compared to tissue from benign tumours. Gene expression profiles were determined by microarray using the Affymetrix GeneChip® Human Genome U133 Plus 2.0 Arrays and validated by Q-PCR using a Corbett RotorGene 6000. Following validation, the gene expression profile of the identified targets was correlated with those of the human breast cancer cell lines MCF-7 and MDA-MD-231. Results The array data revealed that 888 genes were found to be significantly (p ≤ 0.05) differentially expressed between grades I and II tumours and 563 genes between grade III and benign tumours. From these genes, we identified four genes involved in semaphorin–plexin signalling including SEMA4D which has previously been identified as being involved in increased angiogenesis in breast cancers, and three other genes, SEMA4F, PLXNA2 and PLXNA3, which in the literature were associated with tumourigenesis, but not directly in breast tumourigenesis. The microarray analysis revealed that SEMA4D was significantly (P = 0.0347) down-regulated in the grade III tumours compared to benign tumours; SEMA4F, was significantly (P = 0.0159) down-regulated between grades I and II tumours; PLXNA2 was significantly (P = 0.036) down-regulated between grade III and benign tumours and PLXNA3 significantly (P = 0.042) up-regulated between grades I and II tumours. Gene expression of SEMA4D was validated using Q-PCR, demonstrating the same expression profile in both data sets. When the sample set was increased to incorporate more cases, SEMA4D continued to follow the same expression profile, including statistical significance for the differences observed and small standard deviations. In vitro the same pattern was present where expression for SEMA4D was significantly higher in MDA-MB-231 cells when compared to MCF-7 cells. The expression of SEMA4F, PLXNA2 and PLXNA3 could not be validated using Q-PCR, however in vitro analysis of these three genes revealed that both SEMA4F and PLXNA3 followed the microarray trend in expression, although they did not reach significance. In contrast, PLXNA2 demonstrated statistical significance and was in concordance with the literature. Discussion We, and others, have proposed SEMA4D to be a gene with a potentially protective effect in benign tumours that contributes to tumour growth and metastatic suppression. Previous data supports a role for SEMA4F as a tumour suppressor in the peripheral nervous system but our data seems to indicate that the gene is involved in tumour progression in breast cancer. Our in vitro analysis of PLXNA2 revealed that the gene has higher expression in more aggressive breast cancer cell types. Finally, our in vitro analysis on PLXNA3 also suggest that this gene may have some form of growth suppressive role in breast cancer, in addition to a similar role for the gene previously reported in ovarian cancer. From the data obtained in this study, SEMA4D may have a role in more aggressive and potentially metastatic breast tumours. Conclusions Semaphorins and their receptors, the plexins, have been implicated in numerous aspects of neural development, however their expression in many other epithelial tissues suggests that the semaphorin–plexin signalling system also contributes to blood vessel growth and development. These findings warrant further investigation of the role of semaphorins and plexins and their role in normal and tumour-induced angiogenesis in vivo and in vitro. This may represent a new front of attack in anti-angiogenic therapies of breast and other cancers.
Resumo:
Multiple sclerosis (MS) is a serious neurological disorder affecting young Caucasian individuals, usually with an age of onset at 18 to 40 years old. Females account for approximately 60x of MS cases and the manifestation and course of the disease is highly variable from patient to patient. The disorder is characterised by the development of plaques within the central nervous system (CNS). Many gene expression studies have been undertaken to look at the specific patterns of gene transcript levels in MS. Human tissues and experimental mice were used in these gene-profiling studies and a very valuable and interesting set of data has resulted from these various expression studies. In general, genes showing variable expression include mainly immunological and inflammatory genes, stress and antioxidant genes, as well as metabolic and central nervous system markers. Of particular interest are a number of genes localised to susceptible loci previously shown to be in linkage with MS. However due to the clinical complexity of the disease, the heterogeneity of the tissues used in expression studies, as well as the variable DNA chips/membranes used for the gene profiling, it is difficult to interpret the available information. Although this information is essential for the understanding of the pathogenesis of MS, it is difficult to decipher and define the gene pathways involved in the disorder. Experiments in gene expression profiling in MS have been numerous and lists of candidates are now available for analysis. Researchers have investigated gene expression in peripheral mononuclear white blood cells (PBMCs), in MS animal models Experimental Allergic Encephalomyelitis (EAE) and post mortem MS brain tissues. This review will focus on the results of these studies.
Resumo:
Migraine is a common complex neurological disorder with a well-known but poorly characterized genetic liability. The search for migraine susceptibility genes has been the focus of intense research. It is now believed that common migraine is not a single gene disorder, but attributable to several potentially interacting genetic variants. These variants may differ in each sufferer and interact with environmental factors to set the individual migraine threshold. This genetic liability may play an important role in the clinical heterogeneity seen in migraine and also in the variability of treatment response. This review will look at genetic loci implicated in migraine to date and consider their current or prospective role in migraine therapy. To elucidate the complex nature of migraine genetic liability, approaches that consider detailed endophenotypic profiles that encompass treatment response may provide much more relevant information than simple end diagnosis.
Resumo:
Familial hemiplegic migraine is a severe, rare subtype of migraine. Gene mutations on chromosome 19 have been identified in the calcium channel, voltage-dependent, P/Q type, alpha-1A subunit gene (chromosome 19p13) for familial hemiplegic migraine. Recently a gene mutation (Serine-218-Leucine) for a dramatic syndrome associated with familial hemiplegic migraine, commonly named “migraine coma”, has implicated exon 5 of this gene. The occurrence of trivial head trauma, in such familial hemiplegic migraine patients, may also be complicated by severe, sometimes even fatal, cerebral edema and coma occurring after a lucid interval. Sporadic hemiplegic migraine shares a similar spectrum of clinical presentation and genetic heterogeneity. The case report presented in this article implicates the involvement of the Serine-218-Leucine mutation in the extremely rare disorder of minor head trauma–induced migraine coma. We conclude that the Serine-218-Leucine mutation in the calcium channel, voltage-dependent, P/Q type, alpha-1A subunit gene is involved in sporadic hemiplegic migraine, delayed cerebral edema and coma after minor head trauma.
Resumo:
Migraine is a common complex disorder characterized by severe recurrent headache and usually accompanied by nausea and vomiting. Previous studies in our laboratory have utilized three large multigenerational Australian pedigrees affected with migraine to indicate that the disease is genetically heterogeneous, with linkage results implicating genomic susceptibility regions on both chromosomes 19p and Xq. The present study explores the possibility of a correlation between genetic and clinical heterogeneity in these affected pedigrees. Specifically, the clinical characteristics of migraine including subtype, age of onset, frequency, duration, and disease symptoms were compared between the migraine pedigrees, and gender differences were also assessed. Our exploratory analyses revealed no significant differences in any of the clinical characteristics tested between the chromosome 19-linked family and the two X-linked families. Also, we did not detect any differences in male vs. female clinical features for these pedigrees. In conclusion, migraine is considered to be a clinically and genetically heterogeneous disorder; however, our study provided no conclusive evidence that variation in genomic susceptibility region is related to heterogeneity at the clinical level in these migraine-affected pedigrees.
Resumo:
Credence goods markets suffer from inefficiencies caused by superior information of sellers about the surplus-maximizing quality. While standard theory predicts that equal mark-up prices solve the credence goods problem if customers can verify the quality received, experimental evidence indicates the opposite. We identify a lack of robustness of institutional design with respect to heterogeneity in distributional preferences as a possible cause and design new experiments that allow for parsimonious identification of sellers’ distributional types. Our results indicate that less than a fourth of the subjects behave according to standard theory’s assumption, the rest behaving either in line with non-standard selfish or in accordance with non-trivial other-regarding preferences. We discuss consequences of our findings for institutional design and agent selection.
Resumo:
Migraine is a common complex disorder that shows strong familial aggregation. There is a general increased prevalence of migraine in females compared with males, with recent studies indicating that migraine affects 18% of females compared with 6% of males. This preponderance of females among migraine sufferers coupled with evidence of an increased risk of migraine in first degree relatives of male probands but not in relatives of female probands suggests the possibility of an X-linked dominant gene. We report here the localization of a typical migraine susceptibility locus to the X chromosome. Of three large multigenerational migraine pedigrees two families showed significant excess allele sharing to Xq markers (P = 0.031 and P = 0.012). Overall analysis of data from all three pedigrees gave significant evidence in support of linkage and heterogeneity (HLOD = 3.1). These findings provide conclusive evidence that familial typical migraine is a heterogeneous disorder. We suggest that the localization of a migraine susceptibility locus to the X chromosome could in part explain the increased risk of migraine in relatives of male probands and may be involved in the increased female prevalence of this disorder.
Resumo:
Mathematical models of mosquito-borne pathogen transmission originated in the early twentieth century to provide insights into how to most effectively combat malaria. The foundations of the Ross–Macdonald theory were established by 1970. Since then, there has been a growing interest in reducing the public health burden of mosquito-borne pathogens and an expanding use of models to guide their control. To assess how theory has changed to confront evolving public health challenges, we compiled a bibliography of 325 publications from 1970 through 2010 that included at least one mathematical model of mosquito-borne pathogen transmission and then used a 79-part questionnaire to classify each of 388 associated models according to its biological assumptions. As a composite measure to interpret the multidimensional results of our survey, we assigned a numerical value to each model that measured its similarity to 15 core assumptions of the Ross–Macdonald model. Although the analysis illustrated a growing acknowledgement of geographical, ecological and epidemiological complexities in modelling transmission, most models during the past 40 years closely resemble the Ross–Macdonald model. Modern theory would benefit from an expansion around the concepts of heterogeneous mosquito biting, poorly mixed mosquito-host encounters, spatial heterogeneity and temporal variation in the transmission process.