897 resultados para generalized translation operator
Resumo:
A second English translation of Alexander von Humboldt's account of travel to South America, the Relation historique (1814–25), was published between 1852 and 1853. Appearing some 30 years after the first seven-volume translation (1814–29) by Helen Maria Williams, this second rendering of the Personal Narrative by Thomasina Ross was an abridged version that aimed to make Humboldt's travelogue more relevant to the mid-century reader. This translation has largely been overlooked by Humboldt scholars, despite it being a far more affordable, accessible and popular edition. I discuss here how Ross's revisions can be understood within a larger process of rereading and revision that responded to critics’ assessments of the first translation. Emphasising the status of the Personal Narrative as a text in flux, I assess how Ross modernised it to meet the demands of a new readership, recasting the image that Humboldt had constructed of himself as a travelling scientist, scientific writer and member of the international scientific community.
Resumo:
Albrecht von Haller's Die Alpen [The Alps] was an immensely popular piece of early eighteenth-century poetry, yet it took more than half a century to be translated into English. In this article I examine Mrs J. Howorth's prose rendering of it in her translated collection The Poems of Baron Haller (1794) and analyse how the translation itself reflects late-eighteenth-century scientific, political and aesthetic concerns, notably through the influence of Linnaeus and Jean-Jacques Rousseau. Secondly, I explore how Howorth constructed a public image of herself as a female consumer and producer of botanical literature, and argue that her translation constitutes an early example of British women's increasing engagement in science through the activity of translation.
Resumo:
This article provides a historical and theoretical contextualization of Amelia Rosselli's practice of translation. Some hitherto neglected Rosselli translations from John Berryman will be examined to ascertain the role played by translation in her multilingual oeuvre. My analysis builds upon recent explorations of translingual authors' translating practice informed by Deleuze and Guattari's seminal Kafka: pour une littérature mineure. It aims to achieve an understanding of the aesthetic of Rosselli's trilingualism and the function of translation within the author's minorizing project.
Resumo:
In this paper we study Dirichlet convolution with a given arithmetical function f as a linear mapping 'f that sends a sequence (an) to (bn) where bn = Pdjn f(d)an=d.
We investigate when this is a bounded operator on l2 and ¯nd the operator norm. Of particular interest is the case f(n) = n¡® for its connection to the Riemann zeta
function on the line 1, 'f is bounded with k'f k = ³(®). For the unbounded case, we show that 'f : M2 ! M2 where M2 is the subset of l2 of multiplicative sequences, for many f 2 M2. Consequently, we study the `quasi'-norm sup kak = T a 2M2 k'fak kak
for large T, which measures the `size' of 'f on M2. For the f(n) = n¡® case, we show this quasi-norm has a striking resemblance to the conjectured maximal order of
j³(® + iT )j for ® > 12 .
Resumo:
Sufficient conditions are derived for the linear stability with respect to zonally symmetric perturbations of a steady zonal solution to the nonhydrostatic compressible Euler equations on an equatorial � plane, including a leading order representation of the Coriolis force terms due to the poleward component of the planetary rotation vector. A version of the energy–Casimir method of stability proof is applied: an invariant functional of the Euler equations linearized about the equilibrium zonal flow is found, and positive definiteness of the functional is shown to imply linear stability of the equilibrium. It is shown that an equilibrium is stable if the potential vorticity has the same sign as latitude and the Rayleigh centrifugal stability condition that absolute angular momentum increase toward the equator on surfaces of constant pressure is satisfied. The result generalizes earlier results for hydrostatic and incompressible systems and for systems that do not account for the nontraditional Coriolis force terms. The stability of particular equilibrium zonal velocity, entropy, and density fields is assessed. A notable case in which the effect of the nontraditional Coriolis force is decisive is the instability of an angular momentum profile that decreases away from the equator but is flatter than quadratic in latitude, despite its satisfying both the centrifugal and convective stability conditions.
Resumo:
The paper considers second kind equations of the form (abbreviated x=y + K2x) in which and the factor z is bounded but otherwise arbitrary so that equations of Wiener-Hopf type are included as a special case. Conditions on a set are obtained such that a generalized Fredholm alternative is valid: if W satisfies these conditions and I − Kz, is injective for each z ε W then I − Kz is invertible for each z ε W and the operators (I − Kz)−1 are uniformly bounded. As a special case some classical results relating to Wiener-Hopf operators are reproduced. A finite section version of the above equation (with the range of integration reduced to [−a, a]) is considered, as are projection and iterated projection methods for its solution. The operators (where denotes the finite section version of Kz) are shown uniformly bounded (in z and a) for all a sufficiently large. Uniform stability and convergence results, for the projection and iterated projection methods, are obtained. The argument generalizes an idea in collectively compact operator theory. Some new results in this theory are obtained and applied to the analysis of projection methods for the above equation when z is compactly supported and k(s − t) replaced by the general kernel k(s,t). A boundary integral equation of the above type, which models outdoor sound propagation over inhomogeneous level terrain, illustrates the application of the theoretical results developed.
First order k-th moment finite element analysis of nonlinear operator equations with stochastic data
Resumo:
We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.
Resumo:
In this paper we study convergence of the L2-projection onto the space of polynomials up to degree p on a simplex in Rd, d >= 2. Optimal error estimates are established in the case of Sobolev regularity and illustrated on several numerical examples. The proof is based on the collapsed coordinate transform and the expansion into various polynomial bases involving Jacobi polynomials and their antiderivatives. The results of the present paper generalize corresponding estimates for cubes in Rd from [P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), no. 6, 2133-2163].
Resumo:
Numerical Weather Prediction (NWP) fields are used to assist the detection of cloud in satellite imagery. Simulated observations based on NWP are used within a framework based on Bayes' theorem to calculate a physically-based probability of each pixel with an imaged scene being clear or cloudy. Different thresholds can be set on the probabilities to create application-specific cloud-masks. Here, this is done over both land and ocean using night-time (infrared) imagery. We use a validation dataset of difficult cloud detection targets for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) achieving true skill scores of 87% and 48% for ocean and land, respectively using the Bayesian technique, compared to 74% and 39%, respectively for the threshold-based techniques associated with the validation dataset.
Resumo:
In a series of papers, Killworth and Blundell have proposed to study the effects of a background mean flow and topography on Rossby wave propagation by means of a generalized eigenvalue problem formulated in terms of the vertical velocity, obtained from a linearization of the primitive equations of motion. However, it has been known for a number of years that this eigenvalue problem contains an error, which Killworth was prevented from correcting himself by his unfortunate passing and whose correction is therefore taken up in this note. Here, the author shows in the context of quasigeostrophic (QG) theory that the error can ulti- mately be traced to the fact that the eigenvalue problem for the vertical velocity is fundamentally a non- linear one (the eigenvalue appears both in the numerator and denominator), unlike that for the pressure. The reason that this nonlinear term is lacking in the Killworth and Blundell theory comes from neglecting the depth dependence of a depth-dependent term. This nonlinear term is shown on idealized examples to alter significantly the Rossby wave dispersion relation in the high-wavenumber regime but is otherwise irrelevant in the long-wave limit, in which case the eigenvalue problems for the vertical velocity and pressure are both linear. In the general dispersive case, however, one should first solve the generalized eigenvalue problem for the pressure vertical structure and, if needed, diagnose the vertical velocity vertical structure from the latter.
Resumo:
This essay contributes to debates about theatre and cross-cultural encounter through an analysis of Irina Brook’s 1999 Swiss / French co-production of Irish playwright Brian Friel’s Dancing at Lughnasa, in a French translation by Jean-Marie Besset. While the translation and Brook’s mise en scène clearly identified the source text and culture as Irish, they avoided cultural stereotypes, and rendered the play accessible to francophone audiences without entirely assimilating it to a specific Swiss or French cultural context. Drawing on discourses of theatre translation, and concepts of cosmopolitanism and conviviality, the essay focuses on the potential of such textual and theatrical translation to acknowledge specific cultural traces but also to estrange the familiar perceptions and boundaries of both the source and target cultures, offering modes of interconnection across diverse cultural affiliations.