892 resultados para generalized additive model
Resumo:
During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical (TC) slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges.
Resumo:
The paper considers panel data methods for estimating ordered logit models with individual-specific correlated unobserved heterogeneity. We show that a popular approach is inconsistent, whereas some consistent and efficient estimators are available, including minimum distance and generalized method-of-moment estimators. A Monte Carlo study reveals the good properties of an alternative estimator that has not been considered in econometric applications before, is simple to implement and almost as efficient. An illustrative application based on data from the German Socio-Economic Panel confirms the large negative effect of unemployment on life satisfaction that has been found in the previous literature.
Resumo:
BACKGROUND: Despite long-standing calls to disseminate evidence-based treatments for generalized anxiety (GAD), modest progress has been made in the study of how such treatments should be implemented. The primary objective of this study was to test three competing strategies on how to implement a cognitive behavioral treatment (CBT) for out-patients with GAD (i.e., comparison of one compensation vs. two capitalization models). METHODS: For our three-arm, single-blinded, randomized controlled trial (implementation of CBT for GAD [IMPLEMENT]), we recruited adults with GAD using advertisements in high-circulation newspapers to participate in a 14-session cognitive behavioral treatment (Mastery of your Anxiety and Worry, MAW-packet). We randomly assigned eligible patients using a full randomization procedure (1:1:1) to three different conditions of implementation: adherence priming (compensation model), which had a systematized focus on patients' individual GAD symptoms and how to compensate for these symptoms within the MAW-packet, and resource priming and supportive resource priming (capitalization model), which had systematized focuses on patients' strengths and abilities and how these strengths can be capitalized within the same packet. In the intention-to-treat population an outcome composite of primary and secondary symptoms-related self-report questionnaires was analyzed based on a hierarchical linear growth model from intake to 6-month follow-up assessment. This trial is registered at ClinicalTrials.gov (identifier: NCT02039193) and is closed to new participants. FINDINGS: From June 2012 to Nov. 2014, from 411 participants that were screened, 57 eligible participants were recruited and randomly assigned to three conditions. Forty-nine patients (86%) provided outcome data at post-assessment (14% dropout rate). All three conditions showed a highly significant reduction of symptoms over time. However, compared with the adherence priming condition, both resource priming conditions indicated faster symptom reduction. The observer ratings of a sub-sample of recorded videos (n = 100) showed that the therapists in the resource priming conditions conducted more strength-oriented interventions in comparison with the adherence priming condition. No patients died or attempted suicide. INTERPRETATION: To our knowledge, this is the first trial that focuses on capitalization and compensation models during the implementation of one prescriptive treatment packet for GAD. We have shown that GAD related symptoms were significantly faster reduced by the resource priming conditions, although the limitations of our study included a well-educated population. If replicated, our results suggest that therapists who implement a mental health treatment for GAD might profit from a systematized focus on capitalization models. FUNDING: Swiss Science National Foundation (SNSF-Nr. PZ00P1_136937/1) awarded to CF. KEYWORDS: Cognitive behavioral therapy; Evidence-based treatment; Implementation strategies; Randomized controlled trial
Resumo:
We propose a way to incorporate NTBs for the four workhorse models of the modern trade literature in computable general equilibrium models (CGEs). CGE models feature intermediate linkages and thus allow us to study global value chains (GVCs). We show that the Ethier-Krugman monopolistic competition model, the Melitz firm heterogeneity model and the Eaton and Kortum model can be defined as an Armington model with generalized marginal costs, generalized trade costs and a demand externality. As already known in the literature in both the Ethier-Krugman model and the Melitz model generalized marginal costs are a function of the amount of factor input bundles. In the Melitz model generalized marginal costs are also a function of the price of the factor input bundles. Lower factor prices raise the number of firms that can enter the market profitably (extensive margin), reducing generalized marginal costs of a representative firm. For the same reason the Melitz model features a demand externality: in a larger market more firms can enter. We implement the different models in a CGE setting with multiple sectors, intermediate linkages, non-homothetic preferences and detailed data on trade costs. We find the largest welfare effects from trade cost reductions in the Melitz model. We also employ the Melitz model to mimic changes in Non tariff Barriers (NTBs) with a fixed cost-character by analysing the effect of changes in fixed trade costs. While we work here with a model calibrated to the GTAP database, the methods developed can also be applied to CGE models based on the WIOD database.
Resumo:
Previous studies (e.g., Hamori, 2000; Ho and Tsui, 2003; Fountas et al., 2004) find high volatility persistence of economic growth rates using generalized autoregressive conditional heteroskedasticity (GARCH) specifications. This paper reexamines the Japanese case, using the same approach and showing that this finding of high volatility persistence reflects the Great Moderation, which features a sharp decline in the variance as well as two falls in the mean of the growth rates identified by Bai and Perronâs (1998, 2003) multiple structural change test. Our empirical results provide new evidence. First, excess kurtosis drops substantially or disappears in the GARCH or exponential GARCH model that corrects for an additive outlier. Second, using the outlier-corrected data, the integrated GARCH effect or high volatility persistence remains in the specification once we introduce intercept-shift dummies into the mean equation. Third, the time-varying variance falls sharply, only when we incorporate the break in the variance equation. Fourth, the ARCH in mean model finds no effects of our more correct measure of output volatility on output growth or of output growth on its volatility.
Resumo:
We propose a nonparametric model for global cost minimization as a framework for optimal allocation of a firm's output target across multiple locations, taking account of differences in input prices and technologies across locations. This should be useful for firms planning production sites within a country and for foreign direct investment decisions by multi-national firms. Two illustrative examples are included. The first example considers the production location decision of a manufacturing firm across a number of adjacent states of the US. In the other example, we consider the optimal allocation of US and Canadian automobile manufacturers across the two countries.
Resumo:
With the recognition of the importance of evidence-based medicine, there is an emerging need for methods to systematically synthesize available data. Specifically, methods to provide accurate estimates of test characteristics for diagnostic tests are needed to help physicians make better clinical decisions. To provide more flexible approaches for meta-analysis of diagnostic tests, we developed three Bayesian generalized linear models. Two of these models, a bivariate normal and a binomial model, analyzed pairs of sensitivity and specificity values while incorporating the correlation between these two outcome variables. Noninformative independent uniform priors were used for the variance of sensitivity, specificity and correlation. We also applied an inverse Wishart prior to check the sensitivity of the results. The third model was a multinomial model where the test results were modeled as multinomial random variables. All three models can include specific imaging techniques as covariates in order to compare performance. Vague normal priors were assigned to the coefficients of the covariates. The computations were carried out using the 'Bayesian inference using Gibbs sampling' implementation of Markov chain Monte Carlo techniques. We investigated the properties of the three proposed models through extensive simulation studies. We also applied these models to a previously published meta-analysis dataset on cervical cancer as well as to an unpublished melanoma dataset. In general, our findings show that the point estimates of sensitivity and specificity were consistent among Bayesian and frequentist bivariate normal and binomial models. However, in the simulation studies, the estimates of the correlation coefficient from Bayesian bivariate models are not as good as those obtained from frequentist estimation regardless of which prior distribution was used for the covariance matrix. The Bayesian multinomial model consistently underestimated the sensitivity and specificity regardless of the sample size and correlation coefficient. In conclusion, the Bayesian bivariate binomial model provides the most flexible framework for future applications because of its following strengths: (1) it facilitates direct comparison between different tests; (2) it captures the variability in both sensitivity and specificity simultaneously as well as the intercorrelation between the two; and (3) it can be directly applied to sparse data without ad hoc correction. ^
Neocortical hyperexcitability defect in a mutant mouse model of spike-wave epilepsy, {\it stargazer}
Resumo:
Single-locus mutations in mice can express epileptic phenotypes and provide critical insights into the naturally occurring defects that alter excitability and mediate synchronization in the central nervous system (CNS). One such recessive mutation (on chromosome (Chr) 15), stargazer(stg/stg) expresses frequent bilateral 6-7 cycles per second (c/sec) spike-wave seizures associated with behavioral arrest, and provides a valuable opportunity to examine the inherited lesion associated with spike-wave synchronization.^ The existence of distinct and heterogeneous defects mediating spike-wave discharge (SWD) generation has been demonstrated by the presence of multiple genetic loci expressing generalized spike-wave activity and the differential effects of pharmacological agents on SWDs in different spike-wave epilepsy models. Attempts at understanding the different basic mechanisms underlying spike-wave synchronization have focused on $\gamma$-aminobutyric acid (GABA) receptor-, low threshold T-type Ca$\sp{2+}$ channel-, and N-methyl-D-aspartate receptor (NMDA-R)-mediated transmission. It is believed that defects in these modes of transmission can mediate the conversion of normal oscillations in a trisynaptic circuit, which includes the neocortex, reticular nucleus and thalamus, into spike-wave activity. However, the underlying lesions involved in spike-wave synchronization have not been clearly identified.^ The purpose of this research project was to locate and characterize a distinct neuronal hyperexcitability defect favoring spike-wave synchronization in the stargazer brain. One experimental approach for anatomically locating areas of synchronization and hyperexcitability involved an attempt to map patterns of hypersynchronous activity with antibodies to activity-induced proteins.^ A second approach to characterizing the neuronal defect involved examining the neuronal responses in the mutant following application of pharmacological agents with well known sites of action.^ In order to test the hypothesis that an NMDA receptor mediated hyperexcitability defect exists in stargazer neocortex, extracellular field recordings were used to examine the effects of CPP and MK-801 on coronal neocortical brain slices of stargazer and wild type perfused with 0 Mg$\sp{2+}$ artificial cerebral spinal fluid (aCSF).^ To study how NMDA receptor antagonists might promote increased excitability in stargazer neocortex, two basic hypotheses were tested: (1) NMDA receptor antagonists directly activate deep layer principal pyramidal cells in the neocortex of stargazer, presumably by opening NMDA receptor channels altered by the stg mutation; and (2) NMDA receptor antagonists disinhibit the neocortical network by blocking recurrent excitatory synaptic inputs onto inhibitory interneurons in the deep layers of stargazer neocortex.^ In order to test whether CPP might disinhibit the 0 Mg$\sp{2+}$ bursting network in the mutant by acting on inhibitory interneurons, the inhibitory inputs were pharmacologically removed by application of GABA receptor antagonists to the cortical network, and the effects of CPP under 0 Mg$\sp{2+}$aCSF perfusion in layer V of stg/stg were then compared with those found in +/+ neocortex using in vitro extracellular field recordings. (Abstract shortened by UMI.) ^
Resumo:
The Håkon Mosby Mud Volcano is a natural laboratory to study geological, geochemical, and ecological processes related to deep-water mud volcanism. High resolution bathymetry of the Håkon Mosby Mud Volcano was recorded during RV Polarstern expedition ARK-XIX/3 utilizing the multibeam system Hydrosweep DS-2. Dense spacing of the survey lines and slow ship speed (5 knots) provided necessary point density to generate a regular 10 m grid. Generalization was applied to preserve and represent morphological structures appropriately. Contour lines were derived showing detailed topography at the centre of the Håkon Mosby Mud Volcano and generalized contours in the vicinity. We provide a brief introduction to the Håkon Mosby Mud Volcano area and describe in detail data recording and processing methods, as well as the morphology of the area. Accuracy assessment was made to evaluate the reliability of a 10 m resolution terrain model. Multibeam sidescan data were recorded along with depth measurements and show reflectivity variations from light grey values at the centre of the Håkon Mosby Mud Volcano to dark grey values (less reflective) at the surrounding moat.
Resumo:
This thesis deals with the problem of efficiently tracking 3D objects in sequences of images. We tackle the efficient 3D tracking problem by using direct image registration. This problem is posed as an iterative optimization procedure that minimizes a brightness error norm. We review the most popular iterative methods for image registration in the literature, turning our attention to those algorithms that use efficient optimization techniques. Two forms of efficient registration algorithms are investigated. The first type comprises the additive registration algorithms: these algorithms incrementally compute the motion parameters by linearly approximating the brightness error function. We centre our attention on Hager and Belhumeur’s factorization-based algorithm for image registration. We propose a fundamental requirement that factorization-based algorithms must satisfy to guarantee good convergence, and introduce a systematic procedure that automatically computes the factorization. Finally, we also bring out two warp functions to register rigid and nonrigid 3D targets that satisfy the requirement. The second type comprises the compositional registration algorithms, where the brightness function error is written by using function composition. We study the current approaches to compositional image alignment, and we emphasize the importance of the Inverse Compositional method, which is known to be the most efficient image registration algorithm. We introduce a new algorithm, the Efficient Forward Compositional image registration: this algorithm avoids the necessity of inverting the warping function, and provides a new interpretation of the working mechanisms of the inverse compositional alignment. By using this information, we propose two fundamental requirements that guarantee the convergence of compositional image registration methods. Finally, we support our claims by using extensive experimental testing with synthetic and real-world data. We propose a distinction between image registration and tracking when using efficient algorithms. We show that, depending whether the fundamental requirements are hold, some efficient algorithms are eligible for image registration but not for tracking.
Resumo:
This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use.
Resumo:
The Networks of Evolutionary Processors (NEPs) are computing mechanisms directly inspired from the behavior of cell populations more specifically the point mutations in DNA strands. These mechanisms are been used for solving NP-complete problems by means of a parallel computation postulation. This paper describes an implementation of the basic model of NEP using Web technologies and includes the possibility of designing some of the most common variants of it by means the use of the web page design which eases the configuration of a given problem. It is a system intended to be used in a multicore processor in order to benefit from the multi thread use.
Resumo:
An efficient approach is presented to improve the local and global approximation and modelling capability of Takagi-Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy. The main problem is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the use of the T-S method because this type of membership function has been widely used during the last two decades in the stability, controller design and are popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S method with optimized performance in approximating nonlinear functions. A simple approach with few computational effort, based on the well known parameters' weighting method is suggested for tuning T-S parameters to improve the choice of the performance index and minimize it. A global fuzzy controller (FC) based Linear Quadratic Regulator (LQR) is proposed in order to show the effectiveness of the estimation method developed here in control applications. Illustrative examples of an inverted pendulum and Van der Pol system are chosen to evaluate the robustness and remarkable performance of the proposed method and the high accuracy obtained in approximating nonlinear and unstable systems locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the algorithm.
Resumo:
The generalized master equations (GMEs) that contain multiple time scales have been derived quantum mechanically. The GME method has then been applied to a model of charge migration in proteins that invokes the hole hopping between local amino acid sites driven by the torsional motions of the floppy backbones. This model is then applied to analyze the experimental results for sequence-dependent long-range hole transport in DNA reported by Meggers et al. [Meggers, E., Michel-Beyerle, M. E., & Giese, B. (1998) J. Am. Chem. Soc. 120, 12950–12955]. The model has also been applied to analyze the experimental results of femtosecond dynamics of DNA-mediated electron transfer reported by Zewail and co-workers [Wan, C., Fiebig, T., Kelley, S. O., Treadway, C. R., Barton, J. K. & Zewail, A. H. (1999) Proc. Natl. Acad. Sci. USA 96, 6014–6019]. The initial events in the dynamics of protein folding have begun to attract attention. The GME obtained in this paper will be applicable to this problem.
Resumo:
We report the isolation of generalized transducing phages for Streptomyces species able to transduce chromosomal markers or plasmids between derivatives of Streptomyces coelicolor, the principal genetic model system for this important bacterial genus. We describe four apparently distinct phages (DAH2, DAH4, DAH5, and DAH6) that are capable of transducing multiple chromosomal markers at frequencies ranging from 10−5 to 10−9 per plaque-forming unit. The phages contain DNA ranging in size from 93 to 121 kb and mediate linked transfer of genetic loci at neighboring chromosomal sites sufficiently close to be packaged within the same phage particle. The key to our ability to demonstrate transduction by these phages was the establishment of conditions expected to severely reduce superinfection killing during the selection of transductants. The host range of these phages, as measured by the ability to form plaques, extends to species as distantly related as Streptomyces avermitilis and Streptomyces verticillus, which are among the most commercially important species of this genus. Transduction of plasmid DNA between S. coelicolor and S. verticillus was observed at frequencies of ≈10−4 transductants per colony-forming unit.