983 resultados para frequency features
Resumo:
This paper presents a systematic construction of high-rate and full-diversity space-frequency block codes for MIMO-OFDM systems. While all prior constructions offer only a maximum rate of one complex symbol per channel use, our construction yields rate equal to the number of transmit antennas and simultaneously achieves full-diversity. The proposed construction works for arbitrary number of transmit antennas and arbitrary channel power delay profile. A key step in this construction is the generalization of the stacked matrix code design criteria given by Bolcskei et.al., (IEEE WCNC 2000). Explicit equivalence of our generalized code design criteria with the Hadamard-product based criteria of W. Su et.al., (lEEE Trans. Sig. Proc. Nov 2003) is established and new high-rate codes are constructed using our criteria.
Resumo:
A new solution for unbalanced and nonlinear loads in terms of power circuit topology and controller structure is proposed in this paper. A three-phase four-wire high-frequency ac-link inverter is adopted to cater to such loads. Use of high-frequency transformer results in compact and light-weight systems. The fourth wire is taken out from the midpoint of the isolation transformer in order to avoid the necessity of an extra leg. This makes the converter suitable for unbalanced loads and eliminates the requirements of bulky capacitor in half-bridge inverter. The closed-loop control is carried out in stationary reference frame using proportional + multiresonant controller (three separate resonant controller for fundamental, fifth and seventh harmonic components). The limitations on improving steady-state response of harmonic resonance controllers is investigated and mitigated using a lead-lag compensator. The proposed voltage controller is used along with an inner current loop to ensure excellent performance of the power converter. Simulation studies and experimental results with 1 kVA prototype under nonlinear and unbalanced loading conditions validate the proposed scheme.
Resumo:
The crystal structure determination of three heptapeptides containing alpha-aminoisobutyryl (Aib) residues as a means of helix stabilization provides a high-resolution characterization of 6-->1 hydrogen-bonded conformations, reminiscent of helix-terminating structural features in proteins. The crystal parameters for the three peptides, Boc-Val-Aib-X-Aib-Ala-Aib-Y-OMe, where X and Y are Phe, Leu (I), Leu, Phe (II) and Leu, Leu (III) are: (I) space group P1, Z = 1, a = 9.903 A, b = 10.709 A, c = 11.969 A, alpha = 102.94 degrees, beta = 103.41 degrees, gamma = 92.72 degrees, R = 4.55%; (II) space group P21, Z = 2, a = 10.052 A, b = 17.653 A, c = 13.510 A, beta = 108.45 degrees, R = 4.49%; (III) space group P1, Z = 2 (two independent molecules IIIa and IIIb in the asymmetric unit), a = 10.833 A, b = 13.850 A, c = 16.928 A, alpha = 99.77 degrees, beta = 105.90 degrees, gamma = 90.64 degrees, R = 8.54%. In all cases the helices form 3(10)/alpha-helical (or 3(10)helical) structures, with helical columns formed by head-to-tail hydrogen bonding. The helices assemble in an all-parallel motif in crystals I and III and in an antiparallel motif in II. In the four crystallographically characterized molecules, I, II, IIIa and IIIb, Aib(6) adopts a left-handed helical (hL) conformation with positive phi, psi values, resulting in 6-->1 hydrogen-bond formation between Aib(2) CO and Leu(7)/Phe(7) NH groups. In addition a 4-->1 hydrogen bond is seen between Aib(3) CO and Aib(6) NH groups. This pattern of hydrogen bonding is often observed at the C-terminus of helices proteins, with the terminal pi-type turn being formed by four residues adopting the hRhRhRhL conformation.
Resumo:
Microwave sources used in present day applications are either multiplied source derived from basic quartz crystals, or frequency synthesizers. The frequency multiplication method increases FM noise power considerably, and has very low efficiency in addition to being very complex and expensive. The complexity and cost involved demands a simple, compact and tunable microwave source. A tunable dielectric resonator oscillator(DRO) is an ideal choice for such applications. In this paper, the simulation, design and realization of a tunable DRO with a center frequency of 6250 MHz is presented. Simulation has been carried out on HP-Ees of CAD software. Mechanical and electronic tuning features are provided. The DRO operates over a frequency range of 6235 MHz to 6375 MHz. The output power is +5.33 dBm at centre frequency. The performance of the DRO is as per design with respect to phase noise, harmonic levels and tunability. and hence, can conveniently be used for the intended applications.
Resumo:
A constant switching frequency current error space vector-based hysteresis controller for two-level voltage source inverter-fed induction motor (IM) drives is proposed in this study. The proposed controller is capable of driving the IM in the entire speed range extending to the six-step mode. The proposed controller uses the parabolic boundary, reported earlier, for vector selection in a sector, but uses simple, fast and self-adaptive sector identification logic for sector change detection in the entire modulation range. This new scheme detects the sector change using the change in direction of current error along the axes jA, jB and jC. Most of the previous schemes use an outer boundary for sector change detection. So the current error goes outside the boundary six times during sector change, in one cycle,, introducing additional fifth and seventh harmonic components in phase current. This may cause sixth harmonic torque pulsations in the motor and spread in the harmonic spectrum of phase voltage. The proposed new scheme detects the sector change fast and accurately eliminating the chance of introducing additional fifth and seventh harmonic components in phase current and provides harmonic spectrum of phase voltage, which exactly matches with that of constant switching frequency voltage-controlled space vector pulse width modulation (VC-SVPWM)-based two-level inverter-fed drives.
Resumo:
Use of precoding transforms such as Hadamard Transforms and Phase Alteration for Peak to Average Power Ratio (PAPR) reduction in OFDM systems are well known. In this paper we propose use of Inverse Discrete Fourier Transform (IDFT) and Hadamard transform as precoding transforms in MIMO-OFDM systems to achieve low peak to average power ratio (PAPR). We show that while our approach using IDFT does not disturb the diversity gains of the MIMO-OFDM systems (spatial, temporal and frequency diversity gains), it offers a better trade-off between PAPR reduction and ML decoding complexity compared to that of the Hadamard transform precoding. We study in detail the amount of PAPR reduction achieved for the following two recently proposed full-diversity Space-Frequency coded MIMO-OFDM systems using both the IDFT and the Hadamard transform: (i) W. Su. Z. Safar, M. Olfat, K. J. R. Liu (IEEE Trans. on Signal Processing, Nov. 2003), and (ii) W. Su, Z. Safar, K. J. R. Liu (IEEE Trans. on Information Theory, Jan. 2005).
Resumo:
The conducted as well as the induced voltages on control cables and control circuits due to transient electromagnetic (EM) fields generated during switching operations in a gas-insulated substation (GIS) depend on the waveshape of the very fast transient overvoltages and the associated very-fast transient currents (VFTCs). The aim of this paper is to build a basis for characterizing the VFTC generated in gas-insulated switchgear and the,associated equipment during switching operations for the study of transient coupling phenomena. The peak magnitudes of VFTC and their dominant frequency content at various locations have been computed in a 245-kV GIS for different switching operations as well as substation configurations. Finally, the influence of the substation layout on the frequency spectrum, dominant frequencies, and the highest possible frequency component of the VFTC at various distances from the switch have been reported.
Resumo:
An exact expression for the frequency of a non-linear cubic spring mass system is obtained considering the effect of static deflection. An alternative expression for the approximate frequency is also obtained by the direct linearization procedure; it is shown that this is very accurate as compared with the exact method. This approximate frequency equation is used to explain a “dual behaviour” of the frequency amplitude curves.
Resumo:
DNA sequences containing a stretch of several A:T basepairs without a 5'-TA-3' step are known as A-tracts and have been the subject of extensive investigation because of their unique structural features such as a narrow minor groove and their crucial role in several biological processes. One of the aspects under investigation has been the influence of the 5-methyl group of thymine on the properties of A-tracts. Detailed molecular dynamics simulation studies of the sequences d(CGCAAAUUUGCG) and d(CGCAAATTTGCG) indicate that the presence of the 5-methyl group in thymine increases the frequency of a narrow minor groove conformation, which could facilitate its specific recognition by proteins, and reduce its susceptibility to cleavage by DNase I. The bias toward a wider minor groove in the absence of the thymine 5-methyl group is a static structural feature. Our results also indicate that the presence of the thymine 5-methyl group is necessary for calibrating the backbone conformation and the basepair and dinucleotide step geometry of the core A-tract as well as the flanking CA/TG and the neighboring GC/GC steps, as observed in free and protein-bound DNA. As a consequence, it also fine-tunes the curvature of the longer DNA fragment in which the A-tract is embedded.
Resumo:
A ligand series obtained from V = O stretching frequencies for different monomeric complexes of oxovanadium(IV) is shown to parallel the nephelauxetic series. The ligand series obtained from streching frequencies of other systems are also shown to compare well with the nephelauxetic series rather than the spectrochemical series.
Resumo:
The paper deals with the study of the nature of secondary flow of aRivlin-Ericksen fluid, contained between two concentric spheres, which perform oscillations about a fixed diameter. The steady part of the secondary flow is discussed in detail in the following three cases (i) the outer sphere at rest, the inner oscillating, (ii) the two spheres oscillating with the same angular velocity in the same sense and (iii) the spheres oscillating with the same angular velocity in opposite sense. In a previous paper, a similar problem was discussed for theOldroyd fluids. We find that the secondary flow is strongly dependent on the common frequency of oscillation of the two spheres and on the rotational nature of the motion for the present investigation also. Certain contrasting features of interest between the secondary flow field of the two fluids are also noted.
Resumo:
The Raman spectrum of lithium hydrazinium sulphate has been recorded both in the single crystal form and in aqueous solutions. The crystal exhibits thirty-eight Raman lines having the frequency shifts 52, 70, 104, 146, 174, 220, 260, 302, 350, 454, 470, 610, 630, 715, 977, 1094, 1115, 1132, 1177, 1191, 1260, 1444, 1493, 1577, 1630, 1670, 2205, 2484, 2553, 2655, 2734, 2848, 2894, 2939, 3028, 3132, 3290 and 3330 cm.−1 The aqueous solution gave rise to six Raman lines at 452, 980, 1050–1200, 1260, 1425 and 1570 cm.−1 apart from a maximum at 180 cm.−1 in the ‘wing’ accompanying the Rayleigh line. The observed Raman lines have been assigned as arising from the vibrations of the SO4 ion, N2H5+ ion, Li-O4 group, hydrogen bond and the lattice. The influence of the hydrogen bond on the N-H stretching vibrations has been pointed out. The various features of the observed spectrum strongly support the hypothesis that the NH3 group in the crystal is rotating around the N-N axis at room temperature.
Resumo:
A correlation of the infrared spectra of thiocarbonyl derivatives based on the literature data has been carried out. Assignments have also been made in some new systems. Since simple alkyl thioketones are unstable, we have prepared thiofenchone in order to obtain a reference C=S stretching frequency. The C=S stretching frequency in thiofenchone has been found around 1180 cm−1 which is in fair agreement with the value calculated for thioformaldehyde. In the case of the thiocarbonyl derivatives where the C=S group is linked to elements other than nitrogen, the stretching frequency is generally found in the region 1025–1225 cm−1. Strong vibrational coupling is operative in the case of the nitrogen containing thiocarbonyl derivatives and three bands seem to consistently appear in the regions 1395–1570 cm−1, 1260–1420 cm−1, 940–1140 cm−1 due to the mixed vibrations. These bands, which may be tentatively designated as the “-N-C=S I, II and III bands”, could be useful in qualitative analysis.
Resumo:
A detailed investigation of the natural frequencies and mode shapes of simply supported symmetric trapezoidal plates is undertaken in this paper. For numerical calculations, the relationship that exists between the eigenvalue problem of a polygonal simply supported plate and the eigenvalue problem of polygonal membrane of the same shape is utilized with advantage. The deflection surface is expressed in terms of a Fourier sine series in transformed coordinates and the Galerkin method is used. Results are presented in the form of tables and graphs. Several features like the crossing of frequency curves and the metamorphosis of some of the nodal patterns are observed. By a suitable interpretation of the modes of those symmetric trapezoidal plates which have the median as the nodal line, the results for some of the modes of unsymmetrical trapezoidal plates are also deduced.
Resumo:
The line spectral frequency (LSF) of a causal finite length sequence is a frequency at which the spectrum of the sequence annihilates or the magnitude spectrum has a spectral null. A causal finite-length sequencewith (L + 1) samples having exactly L-LSFs, is referred as an Annihilating (AH) sequence. Using some spectral properties of finite-length sequences, and some model parameters, we develop spectral decomposition structures, which are used to translate any finite-length sequence to an equivalent set of AH-sequences defined by LSFs and some complex constants. This alternate representation format of any finite-length sequence is referred as its LSF-Model. For a finite-length sequence, one can obtain multiple LSF-Models by varying the model parameters. The LSF-Model, in time domain can be used to synthesize any arbitrary causal finite-length sequence in terms of its characteristic AH-sequences. In the frequency domain, the LSF-Model can be used to obtain the spectral samples of the sequence as a linear combination of spectra of its characteristic AH-sequences. We also summarize the utility of the LSF-Model in practical discrete signal processing systems.