958 resultados para free cash flow model
Resumo:
Conditions which influence the viability, integrity, and extraction efficiency of the isolated perfused rat liver were examined to establish optimal conditions for subsequent work in reperfusion injury studies including the choice of buffer, use of oncotic agents, hematocrit, perfusion flow rate, and pressure. Rat livers were perfused with MOPS-buffered Ringer solution with or without erythrocytes. Perfusates were collected and analyzed for blood gases, electrolytes, enzymes, radioactivity in MID studies, and lignocaine in extraction studies. Liver tissue was sampled for histological examinations, and wet:dry weight of the liver was also determined. MOPS-buffered Ringer solution was found to be superior to Krebs bicarbonate buffer, in terms of pH control and buffering capacity, especially during any prolonged period of liver perfusion. A pH of 7.2 is chosen for perfusion since this is the physiological pH of the portal blood. The presence of albumin was important as an oncotic agent, particularly when erythrocytes were used in the perfusate. Perfusion pressure, resistance, and vascular volume are how-dependent and the inclusion of erythrocytes in the perfusate substantially altered the flow characteristics for perfusion pressure and resistance but not vascular volume. Lignocaine extraction was relatively flow-independent. Perfusion injury as defined by enzyme release and tissue fine structure was closely related to the supply of O-2. The optimal conditions for liver perfusion depend upon an adequate supply of oxygen. This can be achieved by using either erythrocyte-free perfusate at a how rate greater than 6 ml/min/g liver or a 20% erythrocyte-containing perfusate at 2 ml/min/g. (C) 1996 Academic Press, Inc.
Resumo:
In this paper, experiments to detect turbulent spots in the transitional boundary layers, formed on a flat plate in a free-piston shock tunnel how, are reported. Experiments indicate that thin-film heat-transfer gauges are suitable for identifying turbulent-spot activity and can be used to identify parameters such as the convection rate of spots and the intermittency of turbulence.
Resumo:
7-ketocholesterol (7-KC) differs from cholesterol by a functional ketone group at C7. It is an oxygenated cholesterol derivative (oxysterol), commonly present in oxidized low-density lipoprotein (LDL). Oxysterols are generated and participate in several physiologic and pathophysiologic processes. For instance, the cytotoxic effects of oxidized LDL have been widely attributed to bioactive compounds like oxysterols. The toxicity is in part due to 7-KC. Here we aimed to demonstrate the possibility of incorporating 7-KC into the synthetic nanoemulsion LDE, which resembles LDL in composition and behavior. This would provide a suitable artificial particle resembling LDL to study 7-KC metabolism. We were able to incorporate 7-KC in several amounts into LDE. The incorporation was evaluated and confirmed by several methods, including gel filtration chromatography, using radiolabeled lipids. The incorporation did not change the main lipid composition characteristics of the new nanoparticle. Particle sizes were also evaluated and did not differ from LDE. In vivo studies were performed by injecting the nanoemulsion into mice. The plasma kinetics and the targeted organs were the same as described for LDE. Therefore, 7-KC-LDE maintains composition, size and some functional characteristics of LDE and could be used in experiments dealing with 7-ketocholesterol metabolism in lipoproteins.
Resumo:
Background: Several studies have already reported the utilization of fibrin glue in microvascular anastomoses to minimize the number of sutures and to decrease the operative time. Despite the good results obtained in most of these experiments, its clinical application has not launched. The aim of this study was to clarify the controversies around the safeness of fibrin glue application in microvascular anastomoses, and also to demonstrate the potential benefits of fibrin glue application in a realistic free flap model. Methods: Twenty-seven rabbits were used in this study The experimental model consisted of a free groin flap transfer to the anterior cervical region. The flap`s circulation was restored by means of an end-to-side anastomosis between the femoral and carotid arteries, and an end-to-end anastomosis between the femoral and external jugular veins. The animals were divided into two groups (n = 10) according to the anastomosis technique: Group I (conventional suture) and group 11 (fibrin glue). Results: The number of sutures required to complete the arterial and venous anastomoses was reduced in 39 and 37% in group 11, respectively. Despite this reduction, the anastomoses maintained adequate patency rates and mechanical strength. Both arterial and venous anastomoses benefited from fibrin glue application, which made them easier and faster to perform. The flaps` ischemic time and the total operative time were also significantly shortened. Conclusions: In this study, the application of fibrin glue in microvascular anastomoses was safe and reliable. The risk-benefit ratio of fibrin glue application in microvascular anastomoses is favorable for its use. (c) 2008 Wiley-Liss, Inc.
Resumo:
We assessed a new experimental model of isolated right ventricular (RV) failure, achieved by means of intramyocardial injection of ethanol. RV dysfunction was induced in 13 mongrel dogs via multiple injections of 96% ethanol (total dose 1 mL/kg), all over the inlet and trabecular RV free walls. Hemodynamic and metabolic parameters were evaluated at baseline, after ethanol injection, and on the 14th postoperative day (POD). Echocardiographic parameters were evaluated at baseline, on the sixth POD, and on the 13th POD. The animals were then euthanized for histopathological analysis of the hearts. There was a 15.4% mortality rate. We noticed a decrease in pulmonary blood flow right after RV failure (P = 0.0018), as well as during reoperation on the 14th POD (P = 0.002). The induced RV dysfunction caused an increase in venous lactate levels immediately after ethanol injection and on the 14th POD (P < 0.0003). The echocardiogram revealed a decrease in the RV ejection fraction on the sixth and 13th PODs (P = 0.0001). There was an increased RV end-diastolic volume on the sixth (P = 0.0001) and 13th PODs (P = 0.0084). The right ventricle showed a 74% +/- 0.06% transmural infarction area, with necrotic lesions aged 14 days. Intramyocardial ethanol injection has allowed the creation of a reproducible and inexpensive model of RV failure. The hemodynamic, metabolic, and echocardiographic parameters assessed at different protocol times are compatible with severe RV failure. This model may be useful in understanding the pathophysiology of isolated right-sided heart failure, as well as in the assessment of ventricular assist devices.
Resumo:
Background: Organs from the so-called marginal donors have been used with a significant higher risk of primary non function than organs retrieved from the optimal donors. We investigated the early metabolic changes and blood flow redistribution in splanchnic territory in an experimental model that mimics marginal brain-dead (BD) donor. Material/Methods: Ten dogs (21.3 +/- 0.9 kg), were subjected to a brain death protocol induced by subdural balloon inflation and observed for 30 min thereafter without ally additional interventions. Mean arterial and intracranial pressures, heart rate, cardiac output (CO), portal vein and hepatic artery blood flows (PVBF and HABF, ultrasonic flowprobe), and O(2)-derived variables were evaluated. Results: An increase in arterial pressure, CO, PVBF and HABF was observed after BD induction. At the end, an intense hypotension with normalization in CO (3.0 +/- 0.2 VS. 2.8 +/- 2.8 L/min) and PVBF (687 +/- 114 vs. 623 +/- 130 ml/min) was observed, whereas HABF (277 33 vs. 134 28 ml/min, p<0.005) remained lower than baseline values. Conclusions: Despite severe hypotension induced by sudden increase of intracranial pressure, the systemic and splanchnic blood flows were partially preserved without signs of severe hypoperfusion (i.e. hyperlactatemia). Additionally, the HABF was mostly negatively affected in this model of marginal BD donor. Our data suggest that not only the cardiac output, but the intrinsic hepatic microcirculatory mechanism plays a role in the hepatic blood flow control after BD.
Resumo:
Objectives To evaluate the presence of false flow three-dimensional (3D) power Doppler signals in `flow-free` models. Methods 3D power Doppler datasets were acquired from three different flow-free phantoms (muscle, air and water) with two different transducers and Virtual Organ Computer-aided AnaLysis was used to generate a sphere that was serially applied through the 3D dataset. The vascularization flow index was used to compare artifactual signals at different depths (from 0 to 6 cm) within the different phantoms and at different gain and pulse repetition frequency (PR F) settings. Results Artifactual Doppler signals were seen in all phantoms despite these being flow-free. The pattern was very similar and the degree of artifact appeared to be dependent on the gain and distance from the transducer. False signals were more evident in the far field and increased as the gain was increased, with false signals first appearing with a gain of 1 dB in the air and muscle phantoms. False signals were seen at a lower gain with the water phantom (-15 dB) and these were associated with vertical lines of Doppler artifact that were related to PRF, and disappeared when reflections were attenuated. Conclusions Artifactual Doppler signals are seen in flow-free phantoms and are related to the gain settings and the distance from the transducer. In the in-vivo situation, the lowest gain settings that allow the detection of blood flow and adequate definition of vessel architecture should be used, which invariably means using a setting near or below the middle of the range available. Additionally, observers should be aware of vertical lines when evaluating cystic or liquid-containing structures. Copyright (C) 2010 ISUOC. Published by John Wiley & Sons, Ltd.
Resumo:
A model has been developed which enables the viscosities of coal ash slags to be predicted as a function of composition and temperature under reducing conditions. The model describes both completely liquid and heterogeneous, i.e. partly crystallised, slags in the Al2O3-CaO-'FeO'-SiO2 system in equilibrium with metallic iron. The Urbain formalism has been modified to describe the viscosities of the liquid slag phase over the complete range of compositions and a wide range of temperatures. The computer package F * A * C * T was used to predict the proportions of solids and the compositions of the remaining liquid phases. The Roscoe equation has been used to describe the effect of presence of solid suspension (slurry effect) on the viscosity of partly crystallised slag systems. The model provides a good description of the experimental data of fully liquid, and liquid + solids mixtures, over the complete range of compositions and a wide range of temperatures. This model can now be used for viscosity predictions in industrial slag systems. Examples of the application of the new model to coal ash fluxing and blending are given in the paper. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A simple method is provided for calculating transport rates of not too fine (d(50) greater than or equal to 0.20 mm) sand under sheet flow conditions. The method consists of a Meyer-Peter-type transport formula operating on a time-varying Shields parameter, which accounts for both acceleration-asymmetry and boundary layer streaming. While velocity moment formulae, e.g.., = Constant x calibrated against U-tube measurements, fail spectacularly under some real waves (Ribberink, J.S., Dohmen-Janssen, C.M., Hanes, D.M., McLean, S.R., Vincent, C., 2000. Near-bed sand transport mechanisms under waves. Proc. 27th Int. Conf. Coastal Engineering, Sydney, ASCE, New York, pp. 3263-3276, Fig. 12), the new method predicts the real wave observations equally well. The reason that the velocity moment formulae fail under these waves is partly the presence of boundary layer streaming and partly the saw-tooth asymmetry, i.e., the front of the waves being steeper than the back. Waves with saw-tooth asymmetry may generate a net landward sediment transport even if = 0, because of the more abrupt acceleration under the steep front. More abrupt accelerations are associated with thinner boundary layers and greater pressure gradients for a given velocity magnitude. The two real wave effects are incorporated in a model of the form Q(s)(t) = Q(s)[theta(t)] rather than Q(S)(t) = Q(S)[u(infinity)(t)], i.e., by expressing the transport rate in terms of an instantaneous Shields parameter rather than in terms of the free stream velocity, and accounting for both streaming and accelerations in the 0(t) calculations. The instantaneous friction velocities u(*)(t) and subsequently theta(t) are calculated as follows. Firstly, a linear filter incorporating the grain roughness friction factor f(2.5) and a phase angle phi(tau) is applied to u(infinity)(t). This delivers u(*)(t) which is used to calculate an instantaneous grain roughness Shields parameter theta(2.5)(t). Secondly, a constant bed shear stress is added which corresponds to the streaming related bed shear stress -rho ($) over bar((u) over tilde(w) over tilde)(infinity) . The method can be applied to any u(infinity)(t) time series, but further experimental validation is recommended before application to conditions that differ strongly from the ones considered below. The method is not recommended for rippled beds or for sheet flow with typical prototype wave periods and d(50) < 0.20 turn. In such scenarios, time lags related to vertical sediment movement become important, and these are not considered by the present model. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Time series of vertical sediment fluxes are derived from concentration time series in sheet flow under waves. While the concentrations C(z,t) vary very little with time for \z\ < 10d(50), the measured vertical sediment fluxes Q(zs)(z,t) vary strongly with time in this vertical band and their time variation follows, to some extent, the variation of the grain roughness Shields parameter 02,5(t). Thus, sediment distribution models based on the pickup function boundary condition are in some qualitative agreement with the measurements. However, the pickup function models are only able to model the upward bursts of sediment during the accelerating phases of the flow. They are, so far, unable to model the following strong downward sediment fluxes, which are observed during the periods of flow deceleration. Classical pickup functions, which essentially depend on the Shields parameter, are also incapable of modelling the secondary entrainment fluxes, which sometimes occur at free stream velocity reversal. The measured vertical fluxes indicate that the effective sediment settling velocity in the high [(0.3 < C(z,t) < 0.4] concentration area is typically only a few percent of the clear water settling velocity, while the measurements of Richardson and Jeronimo [Chem. Eng. Sci. 34 (1979) 1419], from a different physical setting, lead to estimates of the order 20%. The data does not support gradient diffusion as a model for sediment entrainment from the bed. That is, detailed modelling of the observed near-bed fluxes would require diffusivities that go negative during periods of flow deceleration. An observed general trend for concentration variability to increase with elevation close to the bed is also irreconcilable with diffusion models driven by a bottom boundary condition. (C) 2002 Published by Elsevier Science B.V.
Resumo:
We report the first steps of a collaborative project between the University of Queensland, Polyflow, Michelin, SK Chemicals, and RMIT University; on simulation, validation and application of a recently introduced constitutive model designed to describe branched polymers. Whereas much progress has been made on predicting the complex flow behaviour of many - in particular linear - polymers, it sometimes appears difficult to predict simultaneously shear thinning and extensional strain hardening behaviour using traditional constitutive models. Recently a new viscoelastic model based on molecular topology, was proposed by McLeish and Larson (1998). We explore the predictive power of a differential multi-mode version of the pom-pom model for the flow behaviour of two commercial polymer melts: a (long-chain branched) low-density polyethylene (LDPE) and a (linear) high-density polyethylene (HDPE). The model responses are compared to elongational recovery experiments published by Langouche and Debbaut (1999), and start-up of simple shear flow, stress relaxation after simple and reverse step strain experiments carried out in our laboratory.
Resumo:
In this paper the diffusion and flow of carbon tetrachloride, benzene and n-hexane through a commercial activated carbon is studied by a differential permeation method. The range of pressure is covered from very low pressure to a pressure range where significant capillary condensation occurs. Helium as a non-adsorbing gas is used to determine the characteristics of the porous medium. For adsorbing gases and vapors, the motion of adsorbed molecules in small pores gives rise to a sharp increase in permeability at very low pressures. The interplay between a decreasing behavior in permeability due to the saturation of small pores with adsorbed molecules and an increasing behavior due to viscous flow in larger pores with pressure could lead to a minimum in the plot of total permeability versus pressure. This phenomenon is observed for n-hexane at 30degreesC. At relative pressure of 0.1-0.8 where the gaseous viscous flow dominates, the permeability is a linear function of pressure. Since activated carbon has a wide pore size distribution, the mobility mechanism of these adsorbed molecules is different from pore to pore. In very small pores where adsorbate molecules fill the pore the permeability decreases with an increase in pressure, while in intermediate pores the permeability of such transport increases with pressure due to the increasing build-up of layers of adsorbed molecules. For even larger pores, the transport is mostly due to diffusion and flow of free molecules, which gives rise to linear permeability with respect to pressure. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The kinetics of chain reactions of octanedithiol with styrene, thermally initiated with TX29B50 (a 50:50 wt% solution of TX29 diperoxy initiator in a phthalate plasticizer), have been studied over a range of initiator concentrations, a range of mixture formulations and a range of temperatures. This system has been investigated as a model system for the reactions of polyfunctional thiols with divinyl benzene. The reactions have been shown to follow first-order kinetics for both the thiol and the ene species and to be characterized by a dependence on the initiator concentration to the power of one half. The kinetic rate parameters have been shown to adhere to Arrhenius behaviour. A kinetic model for the chain reactions for this system has been proposed. (C) 2003 Society of Chemical Industry.
Resumo:
The species abundance distribution (SAD) has been a central focus of community ecology for over fifty years, and is currently the subject of widespread renewed interest. The gambin model has recently been proposed as a model that provides a superior fit to commonly preferred SAD models. It has also been argued that the model's single parameter (α) presents a potentially informative ecological diversity metric, because it summarises the shape of the SAD in a single number. Despite this potential, few empirical tests of the model have been undertaken, perhaps because the necessary methods and software for fitting the model have not existed. Here, we derive a maximum likelihood method to fit the model, and use it to undertake a comprehensive comparative analysis of the fit of the gambin model. The functions and computational code to fit the model are incorporated in a newly developed free-to-download R package (gambin). We test the gambin model using a variety of datasets and compare the fit of the gambin model to fits obtained using the Poisson lognormal, logseries and zero-sum multinomial distributions. We found that gambin almost universally provided a better fit to the data and that the fit was consistent for a variety of sample grain sizes. We demonstrate how α can be used to differentiate intelligibly between community structures of Azorean arthropods sampled in different land use types. We conclude that gambin presents a flexible model capable of fitting a wide variety of observed SAD data, while providing a useful index of SAD form in its single fitted parameter. As such, gambin has wide potential applicability in the study of SADs, and ecology more generally.
Resumo:
Susceptibility Weighted Image (SWI) is a Magnetic Resonance Imaging (MRI) technique that combines high spatial resolution and sensitivity to provide magnetic susceptibility differences between tissues. It is extremely sensitive to venous blood due to its iron content of deoxyhemoglobin. The aim of this study was to evaluate, through the SWI technique, the differences in cerebral venous vasculature according to the variation of blood pressure values. 20 subjects divided in two groups (10 hypertensive and 10 normotensive patients) underwent a MRI system with a Siemens® scanner model Avanto of 1.5T using a synergy head coil (4 channels). The obtained sequences were T1w, T2w-FLAIR, T2* and SWI. The value of Contrast-to-Noise Ratio (CNR) was assessed in MinIP (Minimum Intensity Projection) and Magnitude images, through drawing free hand ROIs in venous structures: Superior Sagittal Sinus (SSS) Internal Cerebral Vein (ICV) and Sinus Confluence (SC). The obtained values were presented in descriptive statistics-quartiles and extremes diagrams. The results were compared between groups. CNR shown higher values for normotensive group in MinIP (108.89 ± 6.907) to ICV; (238.73 ± 18.556) to SC and (239.384 ± 52.303) to SSS. These values are bigger than images from Hypertensive group about 46 a.u. in average. Comparing the results of Magnitude and MinIP images, there were obtained lower CNR values for the hypertensive group. There were differences in the CNR values between both groups, being these values more expressive in the large vessels-SSS and SC. The SWI is a potential technique to evaluate and characterize the blood pressure variation in the studied vessels adding a physiological perspective to MRI and giving a new approach to the radiological vascular studies.