878 resultados para food production
Resumo:
The way in which total secondary production is partitioned amongst species in various macrofauna communities (Amphiura, Venus, Abra, Modiolus) around the British Isles is discussed. When the proportion of total production is plotted for each species, ranked in order of productive importance, curves are produced which are characteristic of particular physical conditions. The shapes of the curves are independent of the actual species involved, but depend on the proportion of individuals in the community which adopt a particular feeding behaviour, and the scope for diversification within trophic groups. The form of these curves correlates closely with bottom currents and associated bed-stresses, since these affect both the nature of the food supply to bottom animals and the nature of the substrate. These observations have important implications for the structure and functioning of benthic communities. Comparison of production partitioning in the meiofauna of mud and sand substrates indicates a remarkable similarity within trophic groups although the partitioning of production between trophic groups is very different. The shapes of production-rank curves again appear to depend on the scope for diversification within trophic groups. In the meiofauna resources are partitioned more equitably than in the macrofauna. There is a marked discontinuity in the lognormal distribution of body sizes within integrated benthic communities at the meiofauna-macrofauna size boundary.
Resumo:
Samples taken in the northern North Sea with the Continuous Plankton Recorder (CPR), the Undulating Oceanographic Recorder (UOR), the Longhurst Hardy Plankton Recorder (LHPR) and by our colleagues from other participating Institutes during the Fladen Ground Experiment (FLEX 76) were used to describe the vertical distribution and population dynamics of Calanus finmarchicus (Gunnerus) and to provide estimates of the production and carbon budget of the population from 19 March to 3 June, 1976. Total production of the 19 March to 3 June, 1976. Total production of the nauplii and copepodite stages (including adults), during the exponential growth phase in May, was estimated to be in the range of 0.49 to 0.91 g C m-2 d-1 or 29.0 to 55 g dry wt m-2 (14.5 to 27.8 g C m-2) for the three successive 10 d periods in May. Two gross growth efficiencies (K 1) (20 and 34%), together with the lower value of C. finmarchicus production, were used to calculate the gross ingestion levels of algae as 2.45 and 1.44 g C m-2 d-1 (73.5 and 43.2 g C m-2 over the May period). These ingestion levels, together with the algae ingested by other zooplankton species, are greater than the estimated total phytoplankton production of 45.9 g C m-2 over the FLEX period. A number of factors are discussed which could explain the discrepancies between the production estimates. One suggestion is that the vertical distribution of the development stages of this herbivorous copepod and their diel and ontogenetic migration patterns enable it to efficiently exploit its food source. Data from the FLEX experiment indicated that the depletion of nutrients limited the size of the spring bloom, but that it was the grazing pressure exerted by C. finmarchicus which was responsible for the control and depletion of the phytoplankton in the spring of 1976 in the northern North Sea.
Relationships Between Seston Available Food And Feeding-Activity In The Common Mussel Mytilus-Edulis
Resumo:
The feeding and metabolic rates of Mytilus edulis L. of different body sizes were measured in response to changes in particle concentrations ranging from 2 to 350 mg l-1. Rates of oxygen consumption were not significantly affected by changes in seston concentration, whereas clearance rates gradually declined with increasing particle concentration. Pseudofaeces production was initiated at relatively low seston concentrations (<5 mg l-1). Marked seasonal changes were recorded in the composition of suspended particulates (seston) in an estuary in south-west England. Total seston was sampled at frequent intervals throughout an annual cycle and analysed in terms of: particle size-frequency distributions, total dry weight (mg l-1), inorganic content, chlorophyll a, carbohydrate, protein and lipid. The particulate carbohydrate, protein and lipid content provided an estimate of the food content of the seston. The results are discussed in terms of the “food available” to a nonselective suspension feeder, such as M. edulis, during a seasonal cycle. The effect of inorganic silt in suspension was mainly to limit by “dilution” the amount of food material ingested rather than to reduce the amount of material filtered by the mussel. In winter, the food content of the material ingested was 5%, and this increased to 25% during the spring and summer.
Resumo:
Existing methods to predict the effects of climate change on the biomass and production of marine communities are predicated on modelling the interactions and dynamics of individual species, a very challenging approach when interactions and distributions are changing and little is known about the ecological mechanisms driving the responses of many species. An informative parallel approach is to develop size-based methods. These capture the properties of food webs that describe energy flux and production at a particular size, independent of species' ecology. We couple a physical-biogeochemical model with a dynamic, size-based food web model to predict the future effects of climate change on fish biomass and production in 11 large regional shelf seas, with and without fishing effects. Changes in potential fish production are shown to most strongly mirror changes in phytoplankton production. We project declines of 30-60% in potential fish production across some important areas of tropical shelf and upwelling seas, most notably in the eastern Indo-Pacific, the northern Humboldt and the North Canary Current. Conversely, in some areas of the high latitude shelf seas, the production of pelagic predators was projected to increase by 28-89%.
Resumo:
Climate change and variability may have an impact on the occurrence of food safety hazards at various stages of the food chain, from primary production through to consumption. There are multiple pathways through which climate related factors may impact food safety including: changes in temperature and precipitation patterns, increased frequency and intensity of extreme weather events, ocean warming and acidification, and changes in contaminants’ transport pathways among others. Climate change may also affect socio-economic aspects related to food systems such as agriculture, animal production, global trade, demographics and human behaviour which all influence food safety. This paper reviews the potential impacts of predicted changes in climate on food contamination and food safety at various stages of the food chain and identifies adaptation strategies and research priorities to address food safety implications of climate change. The paper concludes that there is a need for intersectoral and international cooperation to better understand the changing food safety situation and in developing and implementing adaptation strategies to address emerging risks associated with climate change.
Resumo:
The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of ~6 Pg C yr−1. Global export estimates show small variation (typically < 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.
Resumo:
Within models, zooplankton grazing is typically defined as being dependent on total prey concentration, with feeding selectivity expressed only as a function of prey size. This behavior ignores taxonomic preferences shown by the preda- tors and the capacity of some zooplankton to actively select or reject individual prey items from mixtures. We carried out two model experiments comparing impacts of zooplankton displaying passive and active selection, which resulted in contrasting dynamics for the pelagic system. Passive selection by the grazer resulted in a top down control on the prey with a fast turn-over of nutrients. Active selection, on the other hand led to a bottom-up control, with slower nutrient turnover constraining primary production by changing the system toward export of particulate matter. Our results suggest that selective feeding behavior is an important trait, and should be considered alongside size and taxonomy when studying the role of zooplankton impact in the ecosystem.
Resumo:
In a warming climate, differential shifts in the seasonal timing of predators and prey have been suggested to lead to trophic ‘‘mismatches’’ that decouple primary, secondary and tertiary production. We tested this hypothesis using a 25-year time-series of weekly sampling at the Plymouth L4 site, comparing 57 plankton taxa spanning 4 trophic levels. During warm years, there was a weak tendency for earlier timings of spring taxa and later timings of autumn taxa. While this is in line with many previous findings, numerous exceptions existed and only a few taxa (e.g. Gyrodinium spp., Pseudocalanus elongatus, and Acartia clausi) showed consistent, strong evidence for temperature-related timing shifts, revealed by all 4 of the timing indices that we used. Also, the calculated offsets in timing i.e. ‘‘mismatches’’) between predator and prey were no greater in extreme warm or cold years than during more average years. Further, the magnitude of these offsets had no effect on the ‘‘success’’ of the predator, in terms of their annual mean abundance or egg production rates. Instead numerous other factors override, including: inter-annual variability in food quantity, high food baseline levels, turnover rates and prolonged seasonal availability, allowing extended periods of production. Furthermore many taxa, notably meroplankton, increased well before the spring bloom. While theoretically a chronic mismatch, this likely reflects trade-offs for example in predation avoidance. Various gelatinous taxa (Phaeocystis, Noctiluca, ctenophores, appendicularians, medusae) may have reduced these predation constraints, with variable, explosive population outbursts likely responding to improved conditions. The match–mismatch hypothesis may apply for highly seasonal, pulsed systems or specialist feeders, but we suggest that the concept is being over-extended to other marine systems where multiple factors compensate.
Resumo:
This paper reviews the use of plant extracts as vegetable coagulants for cheesemaking. It covers the plants used as sources of coagulants, with a historical overview and particular emphasis on Cynara species. The genus Cynara L., its composition, milk clotting and proteolytic enzymes (cardosins) and their specificity towards peptide linkages are also described. Cheeses produced in the Iberian Peninsula using Cynara L. as coagulant are documented. Cynara L. is still the most used vegetable coagulant in cheesemaking, and also the most investigated. However, much work remains to be done to understand its action during cheese maturation and further characterization.
Resumo:
The appearance of the open code paradigm and the demands of social movements have permeated the ways in which today’s cultural institutions are organized. This article analyzes the birth of a new critical and cooperative spatiality and how it is transforming current modes of cultural research and production. It centers on the potential for establishing the new means of cooperation that are being tested in what are defined as collaborative artistic laboratories. These are hybrid spaces of research and creation based on networked and cooperative structures producing a new societal-technical body that forces us to reconsider the traditional organic conditions of the productive scenarios of knowledge and artistic practice.
Resumo:
The aim of the present study was to assess the effects of Holstein-Friesian (HF) and Norwegian (N) dairy cattle genotypes on lameness parameters in dairy cattle within different production systems over the first 2 lactations. Following calving, HF (n = 39) and N (n = 45) heifers were allocated to 1 of 3 systems of production (high level of concentrate, low level of concentrate, and grass-based). High-and low-concentrate animals were continuously housed indoors on a rotational system so that they spent similar amounts of time on slatted and solid concrete floors. Animals on the grass treatment grazed from spring to autumn in both years of the study, so that most animals on this treatment grazed from around peak to late lactation. Claw health was recorded in both hind claws of each animal at 4 observation periods during each lactation as follows: 1) -8 to 70 d postcalving, 2) 71 to 150 d postcalving, 3) 151 to 225 d postcalving, and 4) 226 to 364 d postcalving. Sole lesions, heel erosion, axial wall deviation, sole length of the right lateral hind claw (claw length), right heel width, and right lateral hind heel height were recorded as well as the presence of digital dermatitis. The N cows had lower (better) white line and total lesion scores than HF cows. Cows on the high-and low-concentrate treatments had better sole and total lesion scores than cows on the grass treatment. The HF cows had better locomotion scores than N cows. Breed and production system differences were observed with respect to claw conformation, including claw length, heel width, and heel height. Digital dermatitis was associated with worse sole lesion scores and interacted with production system to influence white line lesion scores and maximum heel erosion scores. This study shows that genetic, environmental, and infectious factors are associated with hoof pathologies in dairy cows.
Resumo:
The incorporation of melamine into food products is banned but its misuse has been widely reported in both animal feeds and food. The development of a rapid screening immunoassay for monitoring of the substance is an urgent requirement. Two haptens of melamine were synthesized by introducing spacer arms of different lengths and structures on the triazine ring of the analyte molecular structure. 6-Aminocaproic acid and 3-mercaptopropionic acid were reacted with 2-chloro-4,6-diamino-1,3,5-triazine (CAAT) to produce hapten 1[3-(4,6-diamino-1,6-dihydro-1,3,5-triazin-2-ylamino) hexanoic acid] and hapten 2[3-(4,6-diamino-1,6-dihydro-1,3,5-triazin-2-ylthio) propanoic acid]. respectively. The molecular structures of the two haptens were identified by I H nuclear magnetic resonance spectrometry, mass spectrometry and infrared spectrometry. An immunogen was prepared by coupling hapten 1 to bovine serum albumin (BSA). Two plate coating antigens were prepared by coupling both haptens to egg ovalbumin (OVA). A competitive indirect enzyme-linked immunosorbent assay (ciELISA) was developed to evaluate homogeneous and heterogeneous assay formats. The results showed that polyclonal antibodies with high titers were obtained, and the heterogeneous immunoassay format demonstrated a better performance with an IC50 of 70.6 ng mL(-1), a LOD of 2.6 ng mL(-1) and a LOQ of 7.6 ng mL(-1). Except for cyromazine, no obvious cross-reactivity to common compounds was found. The data showed that the hapten synthesis was successful and the resultant antisera could be used in an immunoassay for the rapid and sensitive detection of this banned chemical. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The need for chemical and biological entities of predetermined selectivity and affinity towards target analytes is greater than ever, in applications such as environmental monitoring, bioterrorism detection and analysis of natural toxin contaminants in the food chain.
Resumo:
Body mass has been shown to scale negatively with abundance in a wide range of habitats and ecosystems. It is believed that this relationship has important consequences for the distribution and maintenance of energy in natural communities. Some studies have shown that the relationship between body mass and abundance may be robust to major food web perturbations, fuelling the belief that natural processes may preserve the slope of this relationship and the associated cycling of energy and nutrients. Here, we use data from a long-term experimental food web manipulation to examine this issue in a semi-natural environment. Similar communities were developed in large experimental mesocosms over a six month period. Some of the mesocosms were then subjected to species removals, based on the mean strength of their trophic interactions in the communities. In treatments where the strongest interactors were removed, a community-level trophic cascade occurred. The biomass density of invertebrates increased dramatically in these communities, which led to a suppression of primary production. In spite of these widespread changes in ecosystem functioning, the slope of the relationship between body mass and abundance remained unchanged. This was the case whether average species body mass and abundance or individual organism size spectra were considered. An examination of changes in species composition before and after the experimental manipulations revealed an important mechanism for maintaining the body mass-abundance relationship. The manipulated communities all had a higher species turnover than the intact communities, with the highest turnover in communities that experienced cascading effects. As some species increased in body mass and abundance, new species filled the available size-abundance niches that were created. This maintained the overall body mass-abundance relationship and provided a stabilising structure to these experimental communities.