795 resultados para elastic indenter deformation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents results for the three-dimensional displacement field at Tenerife Island calculated from campaign GPS and ascending and descending ENVISAT DInSAR interferograms. The goal of this work is to provide an example of the flexibility of the technique by fusing together new varieties of geodetic data, and to observe surface deformations and study precursors of potential activity in volcanic regions. Interferometric processing of ENVISAT data was performed with GAMMA software. All possible combinations were used to create interferograms and then stacking was used to increase signal-to-noise ratio. Decorrelated areas were widely observed, particularly for interferograms with large perpendicular baseline and large time span. Tropospheric signal was also observed which significantly complicated the interpretation. Subsidence signal was observed in the NW part of the island and around Mount Teide and agreed in some regions with campaign GPS data. It is expected that the technique will provide better results when more high quality DInSAR and GPS data is available

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, applications in domains such as telecommunications, network security or large scale sensor networks showed the limits of the traditional store-then-process paradigm. In this context, Stream Processing Engines emerged as a candidate solution for all these applications demanding for high processing capacity with low processing latency guarantees. With Stream Processing Engines, data streams are not persisted but rather processed on the fly, producing results continuously. Current Stream Processing Engines, either centralized or distributed, do not scale with the input load due to single-node bottlenecks. Moreover, they are based on static configurations that lead to either under or over-provisioning. This Ph.D. thesis discusses StreamCloud, an elastic paralleldistributed stream processing engine that enables for processing of large data stream volumes. Stream- Cloud minimizes the distribution and parallelization overhead introducing novel techniques that split queries into parallel subqueries and allocate them to independent sets of nodes. Moreover, Stream- Cloud elastic and dynamic load balancing protocols enable for effective adjustment of resources depending on the incoming load. Together with the parallelization and elasticity techniques, Stream- Cloud defines a novel fault tolerance protocol that introduces minimal overhead while providing fast recovery. StreamCloud has been fully implemented and evaluated using several real word applications such as fraud detection applications or network analysis applications. The evaluation, conducted using a cluster with more than 300 cores, demonstrates the large scalability, the elasticity and fault tolerance effectiveness of StreamCloud. Resumen En los útimos años, aplicaciones en dominios tales como telecomunicaciones, seguridad de redes y redes de sensores de gran escala se han encontrado con múltiples limitaciones en el paradigma tradicional de bases de datos. En este contexto, los sistemas de procesamiento de flujos de datos han emergido como solución a estas aplicaciones que demandan una alta capacidad de procesamiento con una baja latencia. En los sistemas de procesamiento de flujos de datos, los datos no se persisten y luego se procesan, en su lugar los datos son procesados al vuelo en memoria produciendo resultados de forma continua. Los actuales sistemas de procesamiento de flujos de datos, tanto los centralizados, como los distribuidos, no escalan respecto a la carga de entrada del sistema debido a un cuello de botella producido por la concentración de flujos de datos completos en nodos individuales. Por otra parte, éstos están basados en configuraciones estáticas lo que conducen a un sobre o bajo aprovisionamiento. Esta tesis doctoral presenta StreamCloud, un sistema elástico paralelo-distribuido para el procesamiento de flujos de datos que es capaz de procesar grandes volúmenes de datos. StreamCloud minimiza el coste de distribución y paralelización por medio de una técnica novedosa la cual particiona las queries en subqueries paralelas repartiéndolas en subconjuntos de nodos independientes. Ademas, Stream- Cloud posee protocolos de elasticidad y equilibrado de carga que permiten una optimización de los recursos dependiendo de la carga del sistema. Unidos a los protocolos de paralelización y elasticidad, StreamCloud define un protocolo de tolerancia a fallos que introduce un coste mínimo mientras que proporciona una rápida recuperación. StreamCloud ha sido implementado y evaluado mediante varias aplicaciones del mundo real tales como aplicaciones de detección de fraude o aplicaciones de análisis del tráfico de red. La evaluación ha sido realizada en un cluster con más de 300 núcleos, demostrando la alta escalabilidad y la efectividad tanto de la elasticidad, como de la tolerancia a fallos de StreamCloud.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model for finite strain elastoplastic consolidation of fully saturated soil media is implemented into a finite element program. The algorithmic treatment of finite strain elastoplasticity for the solid phase is based on multiplicative decomposition and is coupled with the algorithm for fluid flow via the Kirchhoff pore water pressure. A two-field mixed finite element formulation is employed in which the nodal solid displacements and the nodal pore water pressures are coupled via the linear momentum and mass balance equations. The constitutive model for the solid phase is represented by modified Cam—Clay theory formulated in the Kirchhoff principal stress space, and return mapping is carried out in the strain space defined by the invariants of the elastic logarithmic principal stretches. The constitutive model for fluid flow is represented by a generalized Darcy's law formulated with respect to the current configuration. The finite element model is fully amenable to exact linearization. Numerical examples with and without finite deformation effects are presented to demonstrate the impact of geometric nonlinearity on the predicted responses. The paper concludes with an assessment of the performance of the finite element consolidation model with respect to accuracy and numerical stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desarrollo de algoritmo de interpolación basado en descomposición octree y funciones radiales de soporte compacto para movimiento de mallas en problemas aerolásticos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis está enmarcada en el estudio de diferentes procedimientos numéricos para resolver la dinámica de un sistema multicuerpo sometido a restricciones e impacto, que puede estar compuesto por sólidos rígidos y deformables conectados entre sí por diversos tipos de uniones. Dentro de los métodos numéricos analizados se presta un especial interés a los métodos consistentes, los cuales tienen por objetivo que la energía calculada en cada paso de tiempo, para un sistema mecánico, tenga una evolución coherente con el comportamiento teórico de la energía. En otras palabras, un método consistente mantiene constante la energía total en un problema conservativo, y en presencia de fuerzas disipativas proporciona un decremento positivo de la energía total. En esta línea se desarrolla un algoritmo numérico consistente con la energía total para resolver las ecuaciones de la dinámica de un sistema multicuerpo. Como parte de este algoritmo se formulan energéticamente consistentes las restricciones y el contacto empleando multiplicadores de Lagrange, penalización y Lagrange aumentado. Se propone también un método para el contacto con sólidos rígidos representados mediante superficies implícitas, basado en una restricción regularizada que se adaptada adecuadamente para el cumplimiento exacto de la restricción de contacto y para ser consistente con la conservación de la energía total. En este contexto se estudian dos enfoques: uno para el contacto elástico puro (sin deformación) formulado con penalización y Lagrange aumentado; y otro basado en un modelo constitutivo para el contacto con penetración. En el segundo enfoque se usa un potencial de penalización que, en ausencia de componentes disipativas, restaura la energía almacenada en el contacto y disipa energía de forma consistente con el modelo continuo cuando las componentes de amortiguamiento y fricción son consideradas. This thesis focuses on the study of several numerical procedures used to solve the dynamics of a multibody system subjected to constraints and impact. The system may be composed by rigid and deformable bodies connected by different types of joints. Within this framework, special attention is paid to consistent methods, which preserve the theoretical behavior of the energy at each time step. In other words, a consistent method keeps the total energy constant in a conservative problem, and provides a positive decrease in the total energy when dissipative forces are present. A numerical algorithm has been developed for solving the dynamical equations of multibody systems, which is energetically consistent. Energetic consistency in contacts and constraints is formulated using Lagrange multipliers, penalty and augmented Lagrange methods. A contact methodology is proposed for rigid bodies with a boundary represented by implicit surfaces. The method is based on a suitable regularized constraint formulation, adapted both to fulfill exactly the contact constraint, and to be consistent with the conservation of the total energy. In this context two different approaches are studied: the first applied to pure elastic contact (without deformation), formulated with penalty and augmented Lagrange; and a second one based on a constitutive model for contact with penetration. In this second approach, a penalty potential is used in the constitutive model, that restores the energy stored in the contact when no dissipative effects are present. On the other hand, the energy is dissipated consistently with the continuous model when friction and damping are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The failure locus, the characteristics of the stress–strain curve and the damage localization patterns were analyzed in a polypropylene nonwoven fabric under in-plane biaxial deformation. The analysis was carried out by means of a homogenization model developed within the context of the finite element method. It provides the constitutive response for a mesodomain of the fabric corresponding to the area associated to a finite element and takes into account the main deformation and damage mechanisms experimentally observed. It was found that the failure locus in the stress space was accurately predicted by the Von Mises criterion and failure took place by the localization of damage into a crack perpendicular to the main loading axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage models based on the Continuum Damage Mechanics (CDM) include explicitly the coupling between damage and mechanical behavior and, therefore, are consistent with the definition of damage as a phenomenon with mechanical consequences. However, this kind of models is characterized by their complexity. Using the concept of lumped models, possible simplifications of the coupled models have been proposed in the literature to adapt them to the study of beams and frames. On the other hand, in most of these coupled models damage is associated only with the damage energy release rate which is shown to be the elastic strain energy. According to this, damage is a function of the maximum amplitude of cyclic deformation but does not depend on the number of cycles. Therefore, low cycle effects are not taking into account. From the simplified model proposed by Flórez-López, it is the purpose of this paper to present a formulation that allows to take into account the degradation produced not only by the peak values but also by the cumulative effects such as the low cycle fatigue. For it, the classical damage dissipative potential based on the concept of damage energy release rate is modified using a fatigue function in order to include cumulative effects. The fatigue function is determined through parameters such as the cumulative rotation and the total rotation and the number of cycles to failure. Those parameters can be measured or identified physically through the haracteristics of the RC. So the main advantage of the proposed model is the possibility of simulating the low cycle fatigue behavior without introducing parameters with no suitable physical meaning. The good performance of the proposed model is shown through a comparison between numerical and test results under cycling loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the dynamic response of a hydro power plant for providing secondary regulation reserve is studied in detail. S pecial emphasis is given to the elastic water column effects both in the penstock and the tailrace tunnel. For this purpose, a nonline ar model based on the analogy between mass and momentum conservation equations of a water conduit and those of wave propagation in transmission lines is used. The influence of the plant configuration and design parameters on the fulfilment of the Spanish Electrical System Operator requirem ents is analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many applications in several domains such as telecommunications, network security, large scale sensor networks, require online processing of continuous data lows. They produce very high loads that requires aggregating the processing capacity of many nodes. Current Stream Processing Engines do not scale with the input load due to single-node bottlenecks. Additionally, they are based on static con?gurations that lead to either under or over-provisioning. In this paper, we present StreamCloud, a scalable and elastic stream processing engine for processing large data stream volumes. StreamCloud uses a novel parallelization technique that splits queries into subqueries that are allocated to independent sets of nodes in a way that minimizes the distribution overhead. Its elastic protocols exhibit low intrusiveness, enabling effective adjustment of resources to the incoming load. Elasticity is combined with dynamic load balancing to minimize the computational resources used. The paper presents the system design, implementation and a thorough evaluation of the scalability and elasticity of the fully implemented system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen isotopes play a critical role both in inertial and magnetic confinement Nuclear Fusion. Since the preferent fuel needed for this technology is a mixture of deuterium and tritium. The study of these isotopes particularly at very low temperatures carries a technological interest in other applications. The present line promotes a deep study on the structural configuration that hydrogen and deuterium adopt at cryogenic temperatures and at high pressures. Typical conditions occurring in present Inertial Fusion target designs. Our approach is aims to determine the crystal structure characteristics, phase transitions and other parameters strongly correlated to variations of temperature and pressure. With this results is possible calculated the elastic constant and sound velocity for hydrogen and deuterium in molecular solid phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of deformation in soils is of paramount importance in geotechnical engineering. For a long time the complex behaviour of natural deposits defied the ingenuity of engineers. The time has come that, with the aid of computers, numerical methods will allow the solution of every problem if the material law can be specified with a certain accuracy. Boundary Techniques (B.E.) have recently exploded in a splendid flowering of methods and applications that compare advantegeously with other well-established procedures like the finite element method (F.E.). Its application to soil mechanics problems (Brebbia 1981) has started and will grow in the future. This paper tries to present a simple formulation to a classical problem. In fact, there is already a large amount of application of B.E. to diffusion problems (Rizzo et al, Shaw, Chang et al, Combescure et al, Wrobel et al, Roures et al, Onishi et al) and very recently the first specific application to consolidation problems has been published by Bnishi et al. Here we develop an alternative formulation to that presented in the last reference. Fundamentally the idea is to introduce a finite difference discretization in the time domain in order to use the fundamental solution of a Helmholtz type equation governing the neutral pressure distribution. Although this procedure seems to have been unappreciated in the previous technical literature it is nevertheless effective and straightforward to implement. Indeed for the special problem in study it is perfectly suited, because a step by step interaction between the elastic and flow problems is needed. It allows also the introduction of non-linear elastic properties and time dependent conditions very easily as will be shown and compares well with performances of other approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pressuremeter test in boreholes has proven itself as a useful tool in geotechnical explorations, especially comparing its results with those obtained from a mathematical model ruled by a soil representative constitutive equation. The numerical model shown in this paper is aimed to be the reference framework for the interpretation of this test. The model analyses variables such as: the type of response, the initial state, the drainage regime and the constitutive equations. It is a model of finite elements able to work with a mesh without deformation or one adapted to it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanofibrillar Al2O3–Y3Al5O12–ZrO2 eutectic rods were manufactured by directional solidification from the melt at high growth rates in an inert atmosphere using the laser-heated floating zone method. Under conditions of cooperative growth, the ternary eutectic presented a homogeneous microstructure, formed by bundles of single-crystal c-oriented Al2O3 and Y3Al5O12 (YAG) whiskers of ≈100 nm in width with smaller Y2O3-doped ZrO2 (YSZ) whiskers between them. Owing to the anisotropic fibrillar microstructure, Al2O3–YAG–YSZ ternary eutectics present high strength and toughness at ambient temperature while they exhibit superplastic behavior at 1600 K and above. Careful examination of the deformed samples by transmission electron microscopy did not show any evidence of dislocation activity and superplastic deformation was attributed to mass-transport by diffusion within the nanometric domains. This combination of high strength and toughness at ambient temperature together with the ability to support large deformations without failure above 1600 K is unique and shows a large potential to develop new structural materials for very high temperature structural applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extruded Mg–1Mn–1Nd (wt%) (MN11) alloy was tested in tension in an SEM at temperatures of 323K (50°C), 423 K (150°C), and 523 K (250°C) to analyse the local deformation mechanisms through in situ observations. Electron backscatter diffraction was performed before and after the deformation. It was found that the tensile strength decreased with increasing temperature, and the relative activity of different twinning and slip systems was quantified. At 323K (50C), extension twinning, basal, prismatic (a) and pyramidal (c+a) slip were active. Much less extension twinning was observed at 423K (150ºC) while basal slip and prismatic (a) slip were dominant and presented similar activities. At 523K (250ºC), twinning was not observed, and basal slip controlled the deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the temperature on the compressive stress–strain behavior of Al/SiC nanoscale multilayers was studied by means of micropillar compression tests at 23 °C and 100 °C. The multilayers (composed of alternating layers of 60 nm in thickness of nanocrystalline Al and amorphous SiC) showed a very large hardening rate at 23 °C, which led to a flow stress of 3.1 ± 0.2 GPa at 8% strain. However, the flow stress (and the hardening rate) was reduced by 50% at 100 °C. Plastic deformation of the Al layers was the dominant deformation mechanism at both temperatures, but the Al layers were extruded out of the micropillar at 100 °C, while Al plastic flow was constrained by the SiC elastic layers at 23 °C. Finite element simulations of the micropillar compression test indicated the role played by different factors (flow stress of Al, interface strength and friction coefficient) on the mechanical behavior and were able to rationalize the differences in the stress–strain curves between 23 °C and 100 °C.