944 resultados para elastic constants
Resumo:
We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.
Resumo:
This research presents the development of an analytical model to predict the elastic stiffness performance of orthogonal interlock bound 3D woven composites as a consequence of altering the weaving parameters and constituent material types. The present approach formulates expressions at the micro level with the aim of calculating more representative volume fractions of a group of elements to the layer. The rationale in representing the volume fractions within the unit cell more accurately was to improve the elastic stiffness predictions compared to existing analytical modelling approaches. The models developed in this work show good agreement between experimental data and improvement on existing predicted values by models published in literature.
Resumo:
This paper presents a practical algorithm for the simulation of interactive deformation in a 3D polygonal mesh model. The algorithm combines the conventional simulation of deformation using a spring-mass-damping model, solved by explicit numerical integration, with a set of heuristics to describe certain features of the transient behaviour, to increase the speed and stability of solution. In particular, this algorithm was designed to be used in the simulation of synthetic environments where it is necessary to model realistically, in real time, the effect on non-rigid surfaces being touched, pushed, pulled or squashed. Such objects can be solid or hollow, and have plastic, elastic or fabric-like properties. The algorithm is presented in an integrated form including collision detection and adaptive refinement so that it may be used in a self-contained way as part of a simulation loop to include human interface devices that capture data and render a realistic stereoscopic image in real time. The algorithm is designed to be used with polygonal mesh models representing complex topology, such as the human anatomy in a virtual-surgery training simulator. The paper evaluates the model behaviour qualitatively and then concludes with some examples of the use of the algorithm.
Resumo:
This paper develops an improved and accessible framework for modelling time-dependent behaviour of soils using the concepts of elasticity and viscoplasticity. The mathematical description of viscoplastic straining is formulated based on a purely viscoplastic and measurable phenomenon, namely creep. The resulting expression for the viscoplastic strain rates includes a measure of both effective stress and the corresponding volumetric packing of the soil particles. In this way, the model differs from some earlier viscoplastic models and arguably provides a better conceptual description of time-dependent behaviour. Analytical solutions are developed for the simulation of drained and undrained strain-controlled triaxial compression tests. The model is then used to back-analyze the measured response of normally consolidated to moderately overconsolidated specimens of a soft estuarine soil in undrained triaxial compression. The model captures aspects of soil behaviour that cannot be simulated using time-independent elastic–plastic models. Specifically, it can capture the dependence of stress–strain relationships and undrained shear strength on strain rate, the development of irrecoverable plastic strains at constant stress (creep), and the relaxation of stresses at constant strain
Resumo:
The mechanical response of Polyethylene Terephthalate (PET) in elongation is strongly dependent on temperature, strain and strain rate. Near the glass transition temperature Tg, the stress-strain curve presents a strain softening effect vs strain rate but a strain hardening effect vs strain under conditions of large deformations. The main goal of this work is to propose a viscoelastic model to predict the PET behaviour when subjected to large deformations and to determine the material properties from the experimental data. To represent the non–linear effects, an elastic part depending on the elastic equivalent strain and a non-Newtonian viscous part depending on both viscous equivalent strain rate and cumulated viscous strain are tested. The model parameters can then be accurately obtained trough a comparison with the experimental uniaxial and biaxial tests. The in?uence of the temperature on the viscous part is also modelled and an evaluation of the adiabatic self heating of the specimen is compared to experimental results.
Resumo:
This paper describes an experimental investigation into the effect of restricting the vortex-induced vibrations of a spring-mounted rigid cylinder by means of stiff mechanical endstops. Cases of both asymmetric and symmetric restraint are investigated. Results show that limiting the amplitude of the vibrations strongly affects the dynamics of the cylinder, particularly when the offset is small. Fluid-structure interaction is profoundly affected, and the well-known modes of vortex shedding observed with a linear elastic system are modified or absent. There is no evidence of lock-in, and the dominant impact frequency corresponds to a constant Strouhal number of 0.18. The presence of an endstop on one side of the motion can lead to large increases in displacements in the opposite direction. Attention is also given to the nature of the developing chaotic motion, and to impact velocities, which in single-sided impacts approach the maximum velocity of a cylinder with linear compliance undergoing VIV at lock-in. With symmetrical endstops, impact velocities were about one-half of this. Lift coefficients are computed from an analysis of the cylinder’s motion between impacts.
Resumo:
Otto configuration attenuated total reflection (ATR) measurements of the excitation of surface plasmons in the infrared have been carried out on YBCO films deposited on MgO (100) substrates. The dielectric constants for YBCO at 3.392 mu m are determined to be -10 + 15i for c-axis material. The anisotropic nature of the cuprate is seen from films with other orientations: nearly a-axis material has constants of 4.0 + 7.0i. It is thus not metallic in its optical response along the c-axis which lies parallel to the substrate plane. Ellipsometric measurements in the visible on c-axis material point to a maximum surface plasmon energy of 1 eV.
Resumo:
This paper presents an analytical model for the prediction of the elastic behaviour of plain-weave fabric composites. The fabric is a hybrid plain-weave with different materials and undulations in the warp and weft directions. The derivation of the effective material properties is based on classical laminate theory (CLT).
The theoretical predictions have been compared with experimental results and predictions using alternative models available in the literature. Composite laminates were manufactured using the resin infusion under flexible tooling (RIFT) process and tested under tension and in-plane shear loading to validate the model. A good correlation between theoretical and experimental results for the prediction of in-plane properties was obtained. The limitations of the existing theoretical models based on classical laminate theory (CLT) for predicting the out-of-plane mechanical properties are presented and discussed.