703 resultados para dynamic learning environments


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The challenge the community college faces in helping meet the needs of the living open system of society is examined in this study. It is postulated that internalization student outcomes are required by society to reduce entropy and remain self-renewing. Such behavior is characterized as having an intrinsically motivated energy source and displays the seeking and conquering of challenge, the development of reflective knowledge and skill, full use of all capabilities, internal control, growth orientation, high self-esteem, relativistic thinking and competence. The development of a conceptual systems model that suggests how transactions among students, faculty and administration might occur to best meet the needs of internalization outcomes in students, and intrinsic motivation in faculty is a major purpose of this study. It is a speculative model that is based on a synthesis of a wide variety of variables. Empirical evidence, theoretical considerations, and speculative ideas are gathered together from researchers and theoretici.ans who are working on separate answers to questions of intrinsic motivation, internal control and environments that encourage their development. The model considers the effect administrators·have on faculty anq the corresponding effect faculty may have on students. The major concentration is on the administrator--teacher interface.For administrators the model may serve as a guide in planning effective transactions, and establishing system goals. The teacher is offered a means to coordinate actions toward a specific overall objective, and the administrator, teacher and researcher are invited to use the model to experiment, innovate, verify the assumptions on which the model is based, and raise additional hypotheses. Goals and history of the community colleges in Ontario are examined against current problems, previous progress and open system thinking. The nature of the person as a five part system is explored with emphasis on intrinsic motivation. The nature, operation, conceptualization, and value of this internal energy source is reviewed in detail. The current state of society, education and management theory are considered and the value of intrinsically motivating teaching tasks together with "system four" leadership style are featured. Evidence is reviewed that suggests intrinsically motivated faculty are needed, and "system four" leadership style is the kind of interaction-influence system needed to nurture intrinsic motivation in faculty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Population-based metaheuristics, such as particle swarm optimization (PSO), have been employed to solve many real-world optimization problems. Although it is of- ten sufficient to find a single solution to these problems, there does exist those cases where identifying multiple, diverse solutions can be beneficial or even required. Some of these problems are further complicated by a change in their objective function over time. This type of optimization is referred to as dynamic, multi-modal optimization. Algorithms which exploit multiple optima in a search space are identified as niching algorithms. Although numerous dynamic, niching algorithms have been developed, their performance is often measured solely on their ability to find a single, global optimum. Furthermore, the comparisons often use synthetic benchmarks whose landscape characteristics are generally limited and unknown. This thesis provides a landscape analysis of the dynamic benchmark functions commonly developed for multi-modal optimization. The benchmark analysis results reveal that the mechanisms responsible for dynamism in the current dynamic bench- marks do not significantly affect landscape features, thus suggesting a lack of representation for problems whose landscape features vary over time. This analysis is used in a comparison of current niching algorithms to identify the effects that specific landscape features have on niching performance. Two performance metrics are proposed to measure both the scalability and accuracy of the niching algorithms. The algorithm comparison results demonstrate the algorithms best suited for a variety of dynamic environments. This comparison also examines each of the algorithms in terms of their niching behaviours and analyzing the range and trade-off between scalability and accuracy when tuning the algorithms respective parameters. These results contribute to the understanding of current niching techniques as well as the problem features that ultimately dictate their success.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La thèse comporte trois essais en microéconomie appliquée. En utilisant des modèles d’apprentissage (learning) et d’externalité de réseau, elle étudie le comportement des agents économiques dans différentes situations. Le premier essai de la thèse se penche sur la question de l’utilisation des ressources naturelles en situation d’incertitude et d’apprentissage (learning). Plusieurs auteurs ont abordé le sujet, mais ici, nous étudions un modèle d’apprentissage dans lequel les agents qui consomment la ressource ne formulent pas les mêmes croyances a priori. Le deuxième essai aborde le problème générique auquel fait face, par exemple, un fonds de recherche désirant choisir les meilleurs parmi plusieurs chercheurs de différentes générations et de différentes expériences. Le troisième essai étudie un modèle particulier d’organisation d’entreprise dénommé le marketing multiniveau (multi-level marketing). Le premier chapitre est intitulé "Renewable Resource Consumption in a Learning Environment with Heterogeneous beliefs". Nous y avons utilisé un modèle d’apprentissage avec croyances hétérogènes pour étudier l’exploitation d’une ressource naturelle en situation d’incertitude. Il faut distinguer ici deux types d’apprentissage : le adaptive learning et le learning proprement dit. Ces deux termes ont été empruntés à Koulovatianos et al (2009). Nous avons montré que, en comparaison avec le adaptive learning, le learning a un impact négatif sur la consommation totale par tous les exploitants de la ressource. Mais individuellement certains exploitants peuvent consommer plus la ressource en learning qu’en adaptive learning. En effet, en learning, les consommateurs font face à deux types d’incitations à ne pas consommer la ressource (et donc à investir) : l’incitation propre qui a toujours un effet négatif sur la consommation de la ressource et l’incitation hétérogène dont l’effet peut être positif ou négatif. L’effet global du learning sur la consommation individuelle dépend donc du signe et de l’ampleur de l’incitation hétérogène. Par ailleurs, en utilisant les variations absolues et relatives de la consommation suite à un changement des croyances, il ressort que les exploitants ont tendance à converger vers une décision commune. Le second chapitre est intitulé "A Perpetual Search for Talent across Overlapping Generations". Avec un modèle dynamique à générations imbriquées, nous avons étudié iv comment un Fonds de recherche devra procéder pour sélectionner les meilleurs chercheurs à financer. Les chercheurs n’ont pas la même "ancienneté" dans l’activité de recherche. Pour une décision optimale, le Fonds de recherche doit se baser à la fois sur l’ancienneté et les travaux passés des chercheurs ayant soumis une demande de subvention de recherche. Il doit être plus favorable aux jeunes chercheurs quant aux exigences à satisfaire pour être financé. Ce travail est également une contribution à l’analyse des Bandit Problems. Ici, au lieu de tenter de calculer un indice, nous proposons de classer et d’éliminer progressivement les chercheurs en les comparant deux à deux. Le troisième chapitre est intitulé "Paradox about the Multi-Level Marketing (MLM)". Depuis quelques décennies, on rencontre de plus en plus une forme particulière d’entreprises dans lesquelles le produit est commercialisé par le biais de distributeurs. Chaque distributeur peut vendre le produit et/ou recruter d’autres distributeurs pour l’entreprise. Il réalise des profits sur ses propres ventes et reçoit aussi des commissions sur la vente des distributeurs qu’il aura recrutés. Il s’agit du marketing multi-niveau (multi-level marketing, MLM). La structure de ces types d’entreprise est souvent qualifiée par certaines critiques de système pyramidal, d’escroquerie et donc insoutenable. Mais les promoteurs des marketing multi-niveau rejettent ces allégations en avançant que le but des MLMs est de vendre et non de recruter. Les gains et les règles de jeu sont tels que les distributeurs ont plus incitation à vendre le produit qu’à recruter. Toutefois, si cette argumentation des promoteurs de MLMs est valide, un paradoxe apparaît. Pourquoi un distributeur qui désire vraiment vendre le produit et réaliser un gain recruterait-il d’autres individus qui viendront opérer sur le même marché que lui? Comment comprendre le fait qu’un agent puisse recruter des personnes qui pourraient devenir ses concurrents, alors qu’il est déjà établi que tout entrepreneur évite et même combat la concurrence. C’est à ce type de question que s’intéresse ce chapitre. Pour expliquer ce paradoxe, nous avons utilisé la structure intrinsèque des organisations MLM. En réalité, pour être capable de bien vendre, le distributeur devra recruter. Les commissions perçues avec le recrutement donnent un pouvoir de vente en ce sens qu’elles permettent au recruteur d’être capable de proposer un prix compétitif pour le produit qu’il désire vendre. Par ailleurs, les MLMs ont une structure semblable à celle des multi-sided markets au sens de Rochet et Tirole (2003, 2006) et Weyl (2010). Le recrutement a un effet externe sur la vente et la vente a un effet externe sur le recrutement, et tout cela est géré par le promoteur de l’organisation. Ainsi, si le promoteur ne tient pas compte de ces externalités dans la fixation des différentes commissions, les agents peuvent se tourner plus ou moins vers le recrutement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-adaptive software provides a profound solution for adapting applications to changing contexts in dynamic and heterogeneous environments. Having emerged from Autonomic Computing, it incorporates fully autonomous decision making based on predefined structural and behavioural models. The most common approach for architectural runtime adaptation is the MAPE-K adaptation loop implementing an external adaptation manager without manual user control. However, it has turned out that adaptation behaviour lacks acceptance if it does not correspond to a user’s expectations – particularly for Ubiquitous Computing scenarios with user interaction. Adaptations can be irritating and distracting if they are not appropriate for a certain situation. In general, uncertainty during development and at run-time causes problems with users being outside the adaptation loop. In a literature study, we analyse publications about self-adaptive software research. The results show a discrepancy between the motivated application domains, the maturity of examples, and the quality of evaluations on the one hand and the provided solutions on the other hand. Only few publications analysed the impact of their work on the user, but many employ user-oriented examples for motivation and demonstration. To incorporate the user within the adaptation loop and to deal with uncertainty, our proposed solutions enable user participation for interactive selfadaptive software while at the same time maintaining the benefits of intelligent autonomous behaviour. We define three dimensions of user participation, namely temporal, behavioural, and structural user participation. This dissertation contributes solutions for user participation in the temporal and behavioural dimension. The temporal dimension addresses the moment of adaptation which is classically determined by the self-adaptive system. We provide mechanisms allowing users to influence or to define the moment of adaptation. With our solution, users can have full control over the moment of adaptation or the self-adaptive software considers the user’s situation more appropriately. The behavioural dimension addresses the actual adaptation logic and the resulting run-time behaviour. Application behaviour is established during development and does not necessarily match the run-time expectations. Our contributions are three distinct solutions which allow users to make changes to the application’s runtime behaviour: dynamic utility functions, fuzzy-based reasoning, and learning-based reasoning. The foundation of our work is a notification and feedback solution that improves intelligibility and controllability of self-adaptive applications by implementing a bi-directional communication between self-adaptive software and the user. The different mechanisms from the temporal and behavioural participation dimension require the notification and feedback solution to inform users on adaptation actions and to provide a mechanism to influence adaptations. Case studies show the feasibility of the developed solutions. Moreover, an extensive user study with 62 participants was conducted to evaluate the impact of notifications before and after adaptations. Although the study revealed that there is no preference for a particular notification design, participants clearly appreciated intelligibility and controllability over autonomous adaptations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We are investigating how to program robots so that they learn from experience. Our goal is to develop principled methods of learning that can improve a robot's performance of a wide range of dynamic tasks. We have developed task-level learning that successfully improves a robot's performance of two complex tasks, ball-throwing and juggling. With task- level learning, a robot practices a task, monitors its own performance, and uses that experience to adjust its task-level commands. This learning method serves to complement other approaches, such as model calibration, for improving robot performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A distributed method for mobile robot navigation, spatial learning, and path planning is presented. It is implemented on a sonar-based physical robot, Toto, consisting of three competence layers: 1) Low-level navigation: a collection of reflex-like rules resulting in emergent boundary-tracing. 2) Landmark detection: dynamically extracts landmarks from the robot's motion. 3) Map learning: constructs a distributed map of landmarks. The parallel implementation allows for localization in constant time. Spreading of activation computes both topological and physical shortest paths in linear time. The main issues addressed are: distributed, procedural, and qualitative representation and computation, emergent behaviors, dynamic landmarks, minimized communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on autonomous intelligent systems has focused on how robots can robustly carry out missions in uncertain and harsh environments with very little or no human intervention. Robotic execution languages such as RAPs, ESL, and TDL improve robustness by managing functionally redundant procedures for achieving goals. The model-based programming approach extends this by guaranteeing correctness of execution through pre-planning of non-deterministic timed threads of activities. Executing model-based programs effectively on distributed autonomous platforms requires distributing this pre-planning process. This thesis presents a distributed planner for modelbased programs whose planning and execution is distributed among agents with widely varying levels of processor power and memory resources. We make two key contributions. First, we reformulate a model-based program, which describes cooperative activities, into a hierarchical dynamic simple temporal network. This enables efficient distributed coordination of robots and supports deployment on heterogeneous robots. Second, we introduce a distributed temporal planner, called DTP, which solves hierarchical dynamic simple temporal networks with the assistance of the distributed Bellman-Ford shortest path algorithm. The implementation of DTP has been demonstrated successfully on a wide range of randomly generated examples and on a pursuer-evader challenge problem in simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objects with which the hand interacts with may significantly change the dynamics of the arm. How does the brain adapt control of arm movements to this new dynamic? We show that adaptation is via composition of a model of the task's dynamics. By exploring generalization capabilities of this adaptation we infer some of the properties of the computational elements with which the brain formed this model: the elements have broad receptive fields and encode the learned dynamics as a map structured in an intrinsic coordinate system closely related to the geometry of the skeletomusculature. The low--level nature of these elements suggests that they may represent asset of primitives with which a movement is represented in the CNS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stock markets employ specialized traders, market-makers, designed to provide liquidity and volume to the market by constantly supplying both supply and demand. In this paper, we demonstrate a novel method for modeling the market as a dynamic system and a reinforcement learning algorithm that learns profitable market-making strategies when run on this model. The sequence of buys and sells for a particular stock, the order flow, we model as an Input-Output Hidden Markov Model fit to historical data. When combined with the dynamics of the order book, this creates a highly non-linear and difficult dynamic system. Our reinforcement learning algorithm, based on likelihood ratios, is run on this partially-observable environment. We demonstrate learning results for two separate real stocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, we've focussed on the question of how to make a system easy to code the first time, or perhaps on how to ease the system's continued evolution. But if we look at life cycle costs, then we must conclude that the important question is how to make a system easy to operate. To do this we need to make it easy for the operators to see what's going on and to then manipulate the system so that it does what it is supposed to. This is a radically different criterion for success. What makes a computer system visible and controllable? This is a difficult question, but it's clear that today's modern operating systems with nearly 50 million source lines of code are neither. Strikingly, the MIT Lisp Machine and its commercial successors provided almost the same functionality as today's mainstream sytsems, but with only 1 Million lines of code. This paper is a retrospective examination of the features of the Lisp Machine hardware and software system. Our key claim is that by building the Object Abstraction into the lowest tiers of the system, great synergy and clarity were obtained. It is our hope that this is a lesson that can impact tomorrow's designs. We also speculate on how the spirit of the Lisp Machine could be extended to include a comprehensive access control model and how new layers of abstraction could further enrich this model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a system for dynamic network resource configuration in environments with bandwidth reservation and path restoration mechanisms. Our focus is on the dynamic bandwidth management results, although the main goal of the system is the integration of the different mechanisms that manage the reserved paths (bandwidth, restoration, and spare capacity planning). The objective is to avoid conflicts between these mechanisms. The system is able to dynamically manage a logical network such as a virtual path network in ATM or a label switch path network in MPLS. This system has been designed to be modular in the sense that in can be activated or deactivated, and it can be applied only in a sub-network. The system design and implementation is based on a multi-agent system (MAS). We also included details of its architecture and implementation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las capacidades dinámicas constituyen un aporte importante a la estrategia empresarial. De acuerdo con esta premisa se desarrolla el siguiente documento, al reconocer que la generación de competencias se consolida como la base teórica para el logro de sostenibilidad ante eventos de cambio que puedan afectar la estabilidad y la toma de decisiones de las organizaciones. Dada la falta de aplicación empírica del concepto se ha elaborado este paper, en el que se demuestran e identifican las herramientas que la aplicación empiríca puede dar a las organizaciones y los instrumentos que proveen para la generación de valor. A través del caso de estudio ASOS.COM se ejemplifica la necesidad de detección y aprovechamiento de oportunidades y amenazas, así como la reconfiguración, renovación y generación de competencias de segundo orden para enfrentar el cambio. De esta manera por medio de las habilidades creadas al interior de las empresas con enfoque en el aprendizaje e innovación se logra la comprensión del negocio y el afianzamiento de mejores escenarios futuros.