942 resultados para dual frequency antenna
Resumo:
Antenna arrays are groups of antenna elements spaced in a geometrical pattern. By changing the phase excitation of each element, the array is capable of transmitting electromagnetic waves strongly in a chosen direction with little or no radiation in another direction, thus controlling the array's radiation pattern without physically moving any parts. An antenna array of sub-arrays replaces conventional antenna elements with compact circular arrays with potential for improved performance. This thesis expands on the concept by exploring the development, realisation and operation of an array of subarrays. The overall size of the array essentially remains the same, but the array's performance is improved due to having steerable directive subarrays. The negative effects of strong mutual coupling between closely spaced elements of a subarray are analysed and a number of new solutions for element decoupling are proposed.
Resumo:
An improved Phase-Locked Loop (PLL) for extracting phase and frequency of the fundamental component of a highly distorted grid voltage is presented. The structure of the single-phase PLL is based on the Synchronous Reference Frame (SRF) PLL and uses an All Pass Filter (APF) to generate the quadrature component from the single phase input voltage. In order to filter the harmonic content, a Moving Average Filter (MAF) is used, and performance is improved by designing a lead compensator and also a feed-forward compensator. The simulation results are compared to show the improved performance with feed-forward. In addition, the frequency dependency of MAF is dealt with by a proposed method for adaption to the frequency. This method changes the window size based on the frequency on a sample-by-sample basis. By using this method, the speed of resizing can be reduced in order to decrease the output ripples caused by window size variations.
Resumo:
Purpose Two diodes which do not require correction factors for small field relative output measurements are designed and validated using experimental methodology. This was achieved by adding an air layer above the active volume of the diode detectors, which canceled out the increase in response of the diodes in small fields relative to standard field sizes. Methods Due to the increased density of silicon and other components within a diode, additional electrons are created. In very small fields, a very small air gap acts as an effective filter of electrons with a high angle of incidence. The aim was to design a diode that balanced these perturbations to give a response similar to a water-only geometry. Three thicknesses of air were placed at the proximal end of a PTW 60017 electron diode (PTWe) using an adjustable “air cap”. A set of output ratios (ORfclin Det ) for square field sizes of side length down to 5 mm was measured using each air thickness and compared to ORfclin Det measured using an IBA stereotactic field diode (SFD). k fclin, f msr Qclin,Qmsr was transferred from the SFD to the PTWe diode and plotted as a function of air gap thickness for each field size. This enabled the optimal air gap thickness to be obtained by observing which thickness of air was required such that k fclin, f msr Qclin,Qmsr was equal to 1.00 at all field sizes. A similar procedure was used to find the optimal air thickness required to make a modified Sun Nuclear EDGE detector (EDGEe) which s “correction-free” in small field relative dosimetry. In addition, the feasibility of experimentally transferring k fclin, f msr Qclin,Qmsr values from the SFD to unknown diodes was tested by comparing the experimentally transferred k fclin, f msr Qclin,Qmsr values for unmodified PTWe and EDGEe diodes to Monte Carlo simulated values. Results 1.0 mm of air was required to make the PTWe diode correction-free. This modified diode (PTWeair) produced output factors equivalent to those in water at all field sizes (5–50 mm). The optimal air thickness required for the EDGEe diode was found to be 0.6 mm. The modified diode (EDGEeair) produced output factors equivalent to those in water, except at field sizes of 8 and 10 mm where it measured approximately 2% greater than the relative dose to water. The experimentally calculated k fclin, f msr Qclin,Qmsr for both the PTWe and the EDGEe diodes (without air) matched Monte Carlo simulated results, thus proving that it is feasible to transfer k fclin, f msr Qclin,Qmsr from one commercially available detector to another using experimental methods and the recommended experimental setup. Conclusions It is possible to create a diode which does not require corrections for small field output factor measurements. This has been performed and verified experimentally. The ability of a detector to be “correction-free” depends strongly on its design and composition. A nonwater-equivalent detector can only be “correction-free” if competing perturbations of the beam cancel out at all field sizes. This should not be confused with true water equivalency of a detector.
Resumo:
Objective Migraine is a highly disabling disease affecting a significant proportion of the Australian population. The Methylenetetrahydrofolate Reductase (MTHFR) C677T variant has been associated with increased levels of homocysteine and risk of migraine with aura (MA). Folic acid, Vitamin B6 and B12 supplementation has been previously shown to reduce increased levels of homocysteine and decrease migraine symptoms. However the influence of dietary folate intake on migraine has been unclear. The aim of the current study was to analyse the association of dietary folate intake in the form of dietary folate equivalent (DFE), folic acid (FA) and total food folate (TFF) on migraine frequency, severity and disability. Methods A cohort of 141 adult females of Caucasian descent with MA was genotyped for the MTHFRC677T variant using restriction enzyme digestion. Dietary folate information was collected from all participants and analysed using the “FoodWorks” 2009 package. Folate consumption was compared to migraine frequency, severity and disability using linear regression. Results A significant inverse relation was observed between DFE [R2= 0.201, P= 0.045, CI (-0.004, -0.001)] and FA [R2= 0.255, P= 0.036, 95% CI (-0.009, -0.002)] consumption and migraine frequency. It was also observed that in individuals with the CC genotype for the MTHFR C677T variant, migraine frequency was significantly linked to FA consumption [R2= 0.077, P= 0.029, CI (-0.009, -0.005)]. Conclusions The results from this study indicate that folate intake in the form of folic acid may influence migraine frequency in female MA sufferers.
Resumo:
This work deals with estimators for predicting when parametric roll resonance is going to occur in surface vessels. The roll angle of the vessel is modeled as a second-order linear oscillatory system with unknown parameters. Several algorithms are used to estimate the parameters and eigenvalues of the system based on data gathered experimentally on a 1:45 scale model of a tanker. Based on the estimated eigenvalues, the system predicts whether or not parametric roll occurred. A prediction accuracy of 100% is achieved for regular waves, and up to 87.5% for irregular waves.
Resumo:
An opportunistic relay selection scheme improving cooperative diversity is devised using the concept of a virtual SIMO-MISO antenna array. By incorporating multiple users as a virtual distributed antenna, not only helps combat fading but also provides significant advantage in terms of energy consumption. The proposed efficient multiple relay selection uses the concept of the distributed Alamouti scheme in a time varying environment to realize cooperative networking in wireless relay networks and provides the platform for outage, Diversiy-Multiplexing Tradeoff (DMT) and Bit-Error-Rate (BER) analysis to conclude that it is capable of achieving promising diversity gains by operating at much lower SNR when compared with conventional relay selection methods. It also has the added advantage of conserving energy for the relays that are reachable but not selected for the cooperative communication.
Resumo:
A switching control strategy is proposed for single and dual inductor current-fed push-pull converters. The proposed switching control strategy can be used with both current-fed push-pull converters with an active voltage doubler rectifier, or active rectifier, in the secondary side of the isolation transformer. The proposed switching control strategy makes turn-on and turn-off processes of the primary side power switches zero-voltage-switching and zero-current-switching respectively. The soft-switching operation of the single and dual inductor push-pull converters, with both types of active rectifier, is explained. Simulation and experimental results are provided to validate soft switching operation of the current-fed push-pull converters with the proposed switching control strategy.
Resumo:
Background: Hot air ballooning incidents are relatively rare, however, when they do occur they are likely to result in a fatality or serious injury. Human error is commonly attributed as the cause of hot air ballooning incidents; however, error in itself is not an explanation for safety failures. This research aims to identify, and establish the relative importance of factors contributing towards hot air ballooning incidents. Methods: Twenty-two Australian Ballooning Federation (ABF) incident reports were thematically coded using a bottom up approach to identify causal factors. Subsequently, 69 balloonists (mean 19.51 years’ experience) participated in a survey to identify additional causal factors and rate (out of seven) the perceived frequency and potential impact to ballooning operations of each of the previously identified causal factors. Perceived associated risk was calculated by multiplying mean perceived frequency and impact ratings. Results: Incident report coding identified 54 causal factors within nine higher level areas: Attributes, Crew resource management, Equipment, Errors, Instructors, Organisational, Physical Environment, Regulatory body and Violations. Overall, ‘weather’, ‘inexperience’ and ‘poor/inappropriate decisions’ were rated as having greatest perceived associated risk. Discussion: Although errors were nominated as a prominent cause of hot air ballooning incidents, physical environment and personal attributes are also particularly important for safe hot air ballooning operations. In identifying a range of causal factors the areas of weakness surrounding ballooning operations have been defined; it is hoped that targeted safety and training strategies can now be put into place removing these contributing factors and reducing the chance of pilot error.
Resumo:
The sensory systems of the New Zealand kiwi appear to be uniquely adapted to occupy a nocturnal ground-dwelling niche. In addition to well-developed tactile and olfactory systems, the auditory system shows specializations of the ear, which are maintained along the central nervous system. Here, we provide a detailed description of the auditory nerve, hair cells, and stereovillar bundle orientation of the hair cells in the North Island brown kiwi. The auditory nerve of the kiwi contained about 8,000 fibers. Using the number of hair cells and innervating nerve fibers to calculate a ratio of average innervation density showed that the afferent innervation ratio in kiwi was denser than in most other birds examined. The average diameters of cochlear afferent axons in kiwi showed the typical gradient across the tonotopic axis. The kiwi basilar papilla showed a clear differentiation of tall and short hair cells. The proportion of short hair cells was higher than in the emu and likely reflects a bias towards higher frequencies represented on the kiwi basilar papilla. The orientation of the stereovillar bundles in the kiwi basilar papilla showed a pattern similar to that in most other birds but was most similar to that of the emu. Overall, many features of the auditory nerve, hair cells, and stereovilli bundle orientation in the kiwi are typical of most birds examined. Some features of the kiwi auditory system do, however, support a high-frequency specialization, specifically the innervation density and generally small size of hair-cell somata, whereas others showed the presumed ancestral condition similar to that found in the emu.
Resumo:
The intermediate leaf-nosed bat (Hipposideros larvatus) is a medium-sized bat distributed throughout the Indo-Malay region. In north-east India, bats identified as H. larvatus captured at a single cave emitted echolocation calls with a bimodal distribution of peak frequencies, around either 85 kHz or 98 kHz. Individuals echolocating at 85 kHz had larger ears and longer forearms than those echolocating at 98 kHz, although no differences were detected in either wing morphology or diet, suggesting limited resource partitioning. A comparison of mitochondrial control region haplotypes of the two phonic types with individuals sampled from across the Indo-Malay range supports the hypothesis that, in India, two cryptic species are present. The Indian 98-kHz phonic bats formed a monophyletic clade with bats from all other regional populations sampled, to the exclusion of the Indian 85-kHz bats. In India, the two forms showed 12–13% sequence divergence and we propose that the name Hipposideros khasiana for bats of the 85-kHz phonic type. Bats of the 98-kHz phonic type formed a monophyletic group with bats from Myanmar, and corresponded to Hipposideros grandis, which is suggested to be a species distinct from Hipposideros larvatus. Differences in echolocation call frequency among populations did not reflect phylogenetic relationships, indicating that call frequency is a poor indicator of evolutionary history. Instead, divergence in call frequency probably occurs in allopatry, possibly augmented by character displacement on secondary contact to facilitate intraspecific communication.
Resumo:
Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound, Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range–Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range–Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range–Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.