974 resultados para dissolution rate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to find a link between results obtained from a laboratory erosion tester and tests carried out on a pneumatic conveyor, a comparison has been made between weight loss from bends on an industrial-scale pneumatic conveyor and erosion rates obtained in a small centrifugal erosion tester, for the same materials. Identical test conditions have been applied to both experiments so that comparable test results have been obtained. The erosion rate of mild steel commonly used as the wall material of conveyor pipes and pipe bends was determined individually on both test rigs. A relationship between weight loss from the bends and erosion rate determined from the tester has been developed. A discussion based on the results and their applicability to the prediction of wear in pneumatic conveyors concludes the paper. © 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical diagnostic system consisting of the Mach-Zehnder interferometer with the phase shift device and an image processor has been developed for the study of the kinetics of the crystal growing process. The dissolution and crystallization process of NaClO3 crystal has been investigated. The concentration distributions around a growing and dissolving crystal have been obtained by using phase-shift of four-steps theory for the interpretation of the interferograms. The convection (a plume flow) has been visualized and analyzed in the process of the crystal growth. The experiment demonstrates that the buoyancy convection dominates the growth rate of the crystal growing face on the ground-based experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

对涡轮流量传感器进行了理论分析,给出了涡轮流量计仪表常数的计算方法,讨论了获得较大固有仪表常数K_0时涡轮传感器结构参数(如叶片数、涡轮半径、口径等)的优化组合问题,通过多相流动实验,总结出K_0与流动密度之间的实验关系,由此给出用涡轮流量计测量多相流的半理论半经验公式,并在油井多相流量测量中得到了实际应用,符合较好。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Standard algorithms in tracking and other state-space models assume identical and synchronous sampling rates for the state and measurement processes. However, real trajectories of objects are typically characterized by prolonged smooth sections, with sharp, but infrequent, changes. Thus, a more parsimonious representation of a target trajectory may be obtained by direct modeling of maneuver times in the state process, independently from the observation times. This is achieved by assuming the state arrival times to follow a random process, typically specified as Markovian, so that state points may be allocated along the trajectory according to the degree of variation observed. The resulting variable dimension state inference problem is solved by developing an efficient variable rate particle filtering algorithm to recursively update the posterior distribution of the state sequence as new data becomes available. The methodology is quite general and can be applied across many models where dynamic model uncertainty occurs on-line. Specific models are proposed for the dynamics of a moving object under internal forcing, expressed in terms of the intrinsic dynamics of the object. The performance of the algorithms with these dynamical models is demonstrated on several challenging maneuvering target tracking problems in clutter. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates the respective roles that combined index- and gain-coupling play in the overall link performance of distributed feedback (DFB) lasers. Their impacts on both static and dynamic properties such as slope efficiency, resonance frequency, damping rate, and chirp are investigated. Simulation results are compared with experimental data with good agreement. Transmission-oriented optimization is then demonstrated based on a targeted specification. The design tradeoffs are revealed, and it is shown that a modest combination of index- and gain-coupling enables optimum transmission at 10 Gbit/s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strain rate dependence of plastic deformation of Ce60Al15CU10Ni15 bulk metallic glass was studied by nanoindentation. Even though the ratio of room temperature to the glass transition temperature was very high (0.72) for this alloy, the plastic deformation was dominated by shear banding under nanoindentation. The alloy exhibited a critical loading rate dependent serrated flow feature. That is, with increasing loading rate, the alloy exhibited a transition from less prominent serrated flow to pronounced serrated flow during continuous loading but from serrated to smoother flow during stepped loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coupled-cavity passive harmonic mode-locking of a quantum well based vertical-external-cavity surface-emitting laser has been demonstrated, yielding an output pulse train of 1.5 ps pulses at a repetition rate of 80 GHz and with an average power of 80 mW. Harmonic mode-locking results from coupling between the main laser cavity and a cavity formed within the substrate of the saturable absorber structure. Mode-locking on the second harmonic of the substrate cavity allows a train of 1.1 ps pulses to be generated at a repetition rate of 147 GHz with 40 mW average power. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Y-Ba-Cu-O (YBCO) single grains have the potential to generate large trapped magnetic fields for a variety of engineering applications, and research on the processing and properties of this material has attracted world-wide interest. In particular, the introduction of flux pinning centres to the large grain microstructure to improve its current density, Jc, and hence trapped field, has been investigated extensively over the past decade. Y 2Ba4CuMOx [Y-2411(M)], where M = Nb, Ta, Mo, W, Ru, Zr, Bi and Ag, has been reported to form particularly effective flux pinning centres in YBCO due primarily to its ability to exist as nano-size inclusions in the superconducting phase matrix. However, the addition of the Y-2411(M) phase to the precursor composition complicates the melt-processing of single grains. We report an investigation of the growth rate of single YBCO grains containing Y-2411(Bi) phase inclusions and Y2O3. The superconducting properties of these large single grains have been measured specifically to investigate the effect of Y2O3 on broadening the growth window of these materials. © 2010 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbidity measurement for the absolute coagulation rate constant of suspensions has been extensively adopted because of its simplicity and easy implementation. A key factor to derive the rate constant from experimental data is how to theoretically evaluate the so-called optical factor involved in calculating the extinction cross section of doublets formed in the aggregation. In a previous paper, we have shown that compared with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability range of the turbidity methodology as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion about the physical insight of using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed because the indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the calculated data of the optical factor by the T-matrix method for a range of particle radii and incident light wavelengths are listed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dominant industrial approach for the reduction of NO x emissions in industrial gas turbines is the lean pre-mixed prevaporized concept. The main advantage of this concept is the lean operation of the combustion process; this decreases the heat release rate from the flame and results in a reduction in operating temperature. The direct measurement of heat release rates via simultaneous laser induced fluorescence of OH and CH 2O radicals using planar laser induced fluorescence. The product of the two images correlated with the forward production rate of the HCO radical, which in turn has correlated well with heat release rates from premixed hydrocarbon flames. The experimental methodology of the measurement of heat release rate and applications in different turbulent premixed flames were presented. This is an abstract of a paper presented at the 7th World Congress of Chemical Engineering (Glasgow, Scotland 7/10-14/2005).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 1.5 nm/s over a 4-inch diameter and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized as having an sp3 content of up to 77%, plasmon energy of 27 eV, refractive index of 2.45, hydrogen content of about 30%, optical gap of up to 2.1 eV and RMS surface roughness of 0.04 nm. © 1999 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 900 angstrom/min and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized in terms of its bonding, stress and friction coefficient. The results indicated that the ta-C:H produced using this source fulfills the necessary requirements for applications requiring enhanced tribological performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High repetition rate passively mode-locked sources are of significant interest due to their potential for applications including optical clocking, optical sampling, communications and others. Due to their short excited state lifetimes mode-locked VECSELs are ideally suited to high repetition rate operation, however fundamentally mode-locked quantum well-based VECSELs have not achieved repetition rates above 10 GHz due to the limitations placed on the cavity geometry by the requirement that the saturable absorber saturates more quickly than the gain. This issue has been overcome by the use of quantum dot-based saturable absorbers with lower saturation fluences leading to repetition rates up to 50 GHz, but sub-picosecond pulses have not been achieved at these repetition rates. We present a passively harmonically mode-locked VECSEL emitting pulses of 265 fs duration at a repetition rate of 169 GHz with an output power of 20 mW. The laser is based around an antiresonant 6 quantum well gain sample and is mode-locked using a semiconductor saturable absorber mirror. Harmonic modelocking is achieved by using an intracavity sapphire etalon. The sapphire then acts as a coupled cavity, setting the repetition rate of the laser while still allowing a tight focus on the saturable absorber. RF spectra of the laser output show no peaks at harmonics of the fundamental repetition rate up to 26 GHz, indicating stable harmonic modelocking. Autocorrelations reveal groups of pulses circulating in the cavity as a result of an increased tendency towards Q-switched modelocking due to the low pulse energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystal gallium nitride (GaN) is an important technological material used primarily for the manufacture of blue light lasers. An important area of contemporary research is developing a viable growth technique. The ammonothermal technique is an important candidate among many others with promise of commercially viable growth rates and material quality. The GaN growth rates are a complicated function of dissolution kinetics, transport by thermal convection and crystallization kinetics. A complete modeling effort for the growth would involve modeling each of these phenomena and also the coupling between these. As a first step, the crystallization and dissolution kinetics were idealized and the growth rates as determined purely by transport were investigated. The growth rates thus obtained were termed ‘transport determined growth rates’ and in principle are the maximum growth rates that can be obtained for a given configuration of the system. Using this concept, a parametric study was conducted primarily on the geometric and the thermal boundary conditions of the system to optimize the ‘transport determined growth rate’ and determine conditions when transport might be a bottleneck.