961 resultados para discrete-choice models
Resumo:
The majority of past and current individual-tree growth modelling methodologies have failed to characterise and incorporate structured stochastic components. Rather, they have relied on deterministic predictions or have added an unstructured random component to predictions. In particular, spatial stochastic structure has been neglected, despite being present in most applications of individual-tree growth models. Spatial stochastic structure (also called spatial dependence or spatial autocorrelation) eventuates when spatial influences such as competition and micro-site effects are not fully captured in models. Temporal stochastic structure (also called temporal dependence or temporal autocorrelation) eventuates when a sequence of measurements is taken on an individual-tree over time, and variables explaining temporal variation in these measurements are not included in the model. Nested stochastic structure eventuates when measurements are combined across sampling units and differences among the sampling units are not fully captured in the model. This review examines spatial, temporal, and nested stochastic structure and instances where each has been characterised in the forest biometry and statistical literature. Methodologies for incorporating stochastic structure in growth model estimation and prediction are described. Benefits from incorporation of stochastic structure include valid statistical inference, improved estimation efficiency, and more realistic and theoretically sound predictions. It is proposed in this review that individual-tree modelling methodologies need to characterise and include structured stochasticity. Possibilities for future research are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Female choice has rarely been documented in reptiles. In this study we examined the variation, condition-dependence and female preference for a range of male morphological and colour traits in the agamid lizard, Ctenophorus ornatus. Colour traits were measured with reflectance spectrophotometry which allows the accurate quantification of colour traits independent of the human visual system. All the colour traits varied greatly in brightness but only the throat showed high variation in the spectral shape. For the morphological traits, chest patch size showed the highest amount of variation and was also condition-dependent. Males with a larger chest patch also had a patch which was a darker black. Female mate choice trials were conducted on male chest patch size and body size, which is the trait females have preferred in other lizard species. Females showed no preference, measured as spatial association, for larger males or males with bigger chest patches. In post-hoc tests females did not prefer males with brighter throats or darker chests, Our findings suggest that females show no spatial discrimination between males on the basis of a range of traits most expected to influence female choice.
Resumo:
A number of mathematical models have been used to describe percutaneous absorption kinetics. In general, most of these models have used either diffusion-based or compartmental equations. The object of any mathematical model is to a) be able to represent the processes associated with absorption accurately, b) be able to describe/summarize experimental data with parametric equations or moments, and c) predict kinetics under varying conditions. However, in describing the processes involved, some developed models often suffer from being of too complex a form to be practically useful. In this chapter, we attempt to approach the issue of mathematical modeling in percutaneous absorption from four perspectives. These are to a) describe simple practical models, b) provide an overview of the more complex models, c) summarize some of the more important/useful models used to date, and d) examine sonic practical applications of the models. The range of processes involved in percutaneous absorption and considered in developing the mathematical models in this chapter is shown in Fig. 1. We initially address in vitro skin diffusion models and consider a) constant donor concentration and receptor conditions, b) the corresponding flux, donor, skin, and receptor amount-time profiles for solutions, and c) amount- and flux-time profiles when the donor phase is removed. More complex issues, such as finite-volume donor phase, finite-volume receptor phase, the presence of an efflux. rate constant at the membrane-receptor interphase, and two-layer diffusion, are then considered. We then look at specific models and issues concerned with a) release from topical products, b) use of compartmental models as alternatives to diffusion models, c) concentration-dependent absorption, d) modeling of skin metabolism, e) role of solute-skin-vehicle interactions, f) effects of vehicle loss, a) shunt transport, and h) in vivo diffusion, compartmental, physiological, and deconvolution models. We conclude by examining topics such as a) deep tissue penetration, b) pharmacodynamics, c) iontophoresis, d) sonophoresis, and e) pitfalls in modeling.
Resumo:
Background: A variety of methods for prediction of peptide binding to major histocompatibility complex (MHC) have been proposed. These methods are based on binding motifs, binding matrices, hidden Markov models (HMM), or artificial neural networks (ANN). There has been little prior work on the comparative analysis of these methods. Materials and Methods: We performed a comparison of the performance of six methods applied to the prediction of two human MHC class I molecules, including binding matrices and motifs, ANNs, and HMMs. Results: The selection of the optimal prediction method depends on the amount of available data (the number of peptides of known binding affinity to the MHC molecule of interest), the biases in the data set and the intended purpose of the prediction (screening of a single protein versus mass screening). When little or no peptide data are available, binding motifs are the most useful alternative to random guessing or use of a complete overlapping set of peptides for selection of candidate binders. As the number of known peptide binders increases, binding matrices and HMM become more useful predictors. ANN and HMM are the predictive methods of choice for MHC alleles with more than 100 known binding peptides. Conclusion: The ability of bioinformatic methods to reliably predict MHC binding peptides, and thereby potential T-cell epitopes, has major implications for clinical immunology, particularly in the area of vaccine design.
Resumo:
Much of the published work regarding the Isotropic Singularity is performed under the assumption that the matter source for the cosmological model is a barotropic perfect fluid, or even a perfect fluid with a gamma-law equation of state. There are, however, some general properties of cosmological models which admit an Isotropic Singularity, irrespective of the matter source. In particular, we show that the Isotropic Singularity is a point-like singularity and that vacuum space-times cannot admit an Isotropic Singularity. The relationships between the Isotropic Singularity, and the energy conditions, and the Hubble parameter is explored. A review of work by the authors, regarding the Isotropic Singularity, is presented.
Resumo:
Vaccines to prevent PV infection, utilising PV L1 virus like particles (VLPs) to induce neutralising antibody, are in clinical trial and show all the characteristics likely to be associated with success. Results warrant global planning for the deployment of VLP vaccines within a decade, as part of a program to prevent cervical cancer. Vaccines designed to treat existing PV infection by inducing therapeutic cellular immunity targeted to PV proteins are at a much earlier stage of development. The wide choice of potential and proposed antigens, routes and mechanisms of delivery, and possible treatment regimens suggest that, to move the field forward, surrogate markers allowing comparison of the relative efficacy of different vaccine approaches are required. These should be based on reduction in load of virus infection, and need to be validated in animal models or in man. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Nine classes of integrable open boundary conditions, further extending the one-dimensional U-q (gl (212)) extended Hubbard model, have been constructed previously by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary systems are now solved by using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained for all nine cases.
Resumo:
This article tests the hypothesis of opportunistic and partisan cycle models using a new large data set of Brazilian municipalities over the 1989-2005 period. The results show an increase in total and current expenditures and a decrease in municipal investments, local tax revenues, and budget surplus in election years. They also show that partisan ideology exerts a relative influence on the performance of the local public accounts. These results confirm that both opportunistic and partisan cycles have occurred in the management of the budgets of Brazilian municipalities after the end of the military government.
Resumo:
Many models exist in the literature to explain the success of technological innovation. However, no studies have been made regarding graphic formats representing the technological innovation models and their impact, or on the understanding of these models by non-specialists in technology management. Thus, the main objective of this paper is to propose a new graphic configuration to represent the technological innovation management. Based on the literature, the innovation model is presented in the traditional format. Next, the same model is designed in the graphic format - named `the see-saw of competitiveness` - showing the interfaces among the identified factors. The two graphic formats were compared by a group of graduate students in terms of the ease in understanding the conceptual model of innovation. The statistical analysis shows that the seesaw of competitiveness is preferred.
Resumo:
Quantifying mass and energy exchanges within tropical forests is essential for understanding their role in the global carbon budget and how they will respond to perturbations in climate. This study reviews ecosystem process models designed to predict the growth and productivity of temperate and tropical forest ecosystems. Temperate forest models were included because of the minimal number of tropical forest models. The review provides a multiscale assessment enabling potential users to select a model suited to the scale and type of information they require in tropical forests. Process models are reviewed in relation to their input and output parameters, minimum spatial and temporal units of operation, maximum spatial extent and time period of application for each organization level of modelling. Organizational levels included leaf-tree, plot-stand, regional and ecosystem levels, with model complexity decreasing as the time-step and spatial extent of model operation increases. All ecosystem models are simplified versions of reality and are typically aspatial. Remotely sensed data sets and derived products may be used to initialize, drive and validate ecosystem process models. At the simplest level, remotely sensed data are used to delimit location, extent and changes over time of vegetation communities. At a more advanced level, remotely sensed data products have been used to estimate key structural and biophysical properties associated with ecosystem processes in tropical and temperate forests. Combining ecological models and image data enables the development of carbon accounting systems that will contribute to understanding greenhouse gas budgets at biome and global scales.
Resumo:
Exponential and sigmoidal functions have been suggested to describe the bulk density profiles of crusts. The present work aims to evaluate these conceptual models using high resolution X-radiography. Repacked seedbeds from two soil materials, air-dried or prewetted by capillary rise, were subjected to simulated rain, which resulted in three types of structural crusts, namely, slaking, infilling, and coalescing. Bulk density distributions with depth were generated using high-resolution (70 mum), calibrated X-ray images of slices from the resin-impregnated crusted seedbeds. The bulk density decreased progressively with depth, which supports the suggestion that a crust should be considered as a nonuniform layer. For the slaking and the coalescing crusts, the exponential function underestimated the strong change in bulk density across the morphologically defined transition between the crust and the underlying material; the sigmoidal function provided a better description. Neither of these crust models effectively described the shape of the bulk density profiles through the whole seedbed. Below the infilling and slaking crusts, bulk density increased linearly with depth as a result of slumping. In the coalescing crusted seedbed, the whole seedbed uniformly collapsed and most of the bulk density change within the crust could be ascribed to slumping (0.33 g cm(-3)) rather than to crusting (0.12 g cm(-3)). Finally, (i) X-radiography appears as a unique tool to generate high resolution bulk density profiles and (ii) in structural crusts, bulk density profiles could be modeled using the existing exponential and sigmoidal crusting models, provided a slumping model would be coupled.
Resumo:
A generalised ladder operator is used to construct the conserved operators for any one-dimensional lattice model derived from the Yang-Baxter equation. As an example, the low order conserved operators for the XYh model are calculated explicitly.
Resumo:
Models of population dynamics are commonly used to predict risks in ecology, particularly risks of population decline. There is often considerable uncertainty associated with these predictions. However, alternatives to predictions based on population models have not been assessed. We used simulation models of hypothetical species to generate the kinds of data that might typically be available to ecologists and then invited other researchers to predict risks of population declines using these data. The accuracy of the predictions was assessed by comparison with the forecasts of the original model. The researchers used either population models or subjective judgement to make their predictions. Predictions made using models were only slightly more accurate than subjective judgements of risk. However, predictions using models tended to be unbiased, while subjective judgements were biased towards over-estimation. Psychology literature suggests that the bias of subjective judgements is likely to vary somewhat unpredictably among people, depending on their stake in the outcome. This will make subjective predictions more uncertain and less transparent than those based on models. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
No abstract