996 resultados para differential fault attack


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brushless doubly fed induction generator (BDFIG) shows commercial promise for wind power generation due to its lower cost and higher reliability when compared with the conventional DFIG. In the most recent grid codes, wind generators are required to be able to ride through a low-voltage fault and meet the reactive current demand from the grid. A low-voltage ride-through (LVRT) capability is therefore important for wind generators which are integrated into the grid. In this paper, the authors propose a control strategy enabling the BDFIG to successfully ride through a symmetrical voltage dip. The control strategy has been implemented on a 250-kW BDFIG, and the experimental results indicate that the LVRT is possible without a crowbar. © 1982-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on human monetary prediction and decision making emphasize the role of the striatum in encoding prediction errors for financial reward. However, less is known about how the brain encodes financial loss. Using Pavlovian conditioning of visual cues to outcomes that simultaneously incorporate the chance of financial reward and loss, we show that striatal activation reflects positively signed prediction errors for both. Furthermore, we show functional segregation within the striatum, with more anterior regions showing relative selectivity for rewards and more posterior regions for losses. These findings mirror the anteroposterior valence-specific gradient reported in rodents and endorse the role of the striatum in aversive motivational learning about financial losses, illustrating functional and anatomical consistencies with primary aversive outcomes such as pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have conducted triaxial deformation experiments along different loading paths on prism sediments from the Nankai Trough. Different load paths of isotropic loading, uniaxial strain loading, triaxial compression (at constant confining pressure, Pc), undrained Pc reduction, drained Pc reduction, and triaxial unloading at constant Pc, were used to understand the evolution of mechanical and hydraulic properties under complicated stress states and loading histories in accretionary subduction zones. Five deformation experiments were conducted on three sediment core samples for the Nankai prism, specifically from older accreted sediments at the forearc basin, underthrust slope sediments beneath the megasplay fault, and overthrust Upper Shikoku Basin sediments along the frontal thrust. Yield envelopes for each sample were constructed based on the stress paths of Pc-reduction using the modified Cam-clay model, and in situ stress states of the prism were constrained using the results from the other load paths and accounting for horizontal stress. Results suggest that the sediments in the vicinity of the megasplay fault and frontal thrust are highly overconsolidated, and thus likely to deform brittle rather than ductile. The porosity of sediments decreases as the yield envelope expands, while the reduction in permeability mainly depends on the effective mean stress before yield, and the differential stress after yield. An improved understanding of sediment yield strength and hydromechanical properties along different load paths is necessary to treat accurately the coupling of deformation and fluid flow in accretionary subduction zones. © 2012 American Geophysical Union All Rights Reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The notion of coupling within a design, particularly within the context of Multidisciplinary Design Optimization (MDO), is much used but ill-defined. There are many different ways of measuring design coupling, but these measures vary in both their conceptions of what design coupling is and how such coupling may be calculated. Within the differential geometry framework which we have previously developed for MDO systems, we put forth our own design coupling metric for consideration. Our metric is not commensurate with similar types of coupling metrics, but we show that it both provides a helpful geo- metric interpretation of coupling (and uncoupledness in particular) and exhibits greater generality and potential for analysis than those similar metrics. Furthermore, we discuss how the metric might be profitably extended to time-varying problems and show how the metric's measure of coupling can be applied to multi-objective optimization problems (in unconstrained optimization and in MDO). © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidisciplinary Design Optimization (MDO) is a methodology for optimizing large coupled systems. Over the years, a number of different MDO decomposition strategies, known as architectures, have been developed, and various pieces of analytical work have been done on MDO and its architectures. However, MDO lacks an overarching paradigm which would unify the field and promote cumulative research. In this paper, we propose a differential geometry framework as such a paradigm: Differential geometry comes with its own set of analysis tools and a long history of use in theoretical physics. We begin by outlining some of the mathematics behind differential geometry and then translate MDO into that framework. This initial work gives new tools and techniques for studying MDO and its architectures while producing a naturally arising measure of design coupling. The framework also suggests several new areas for exploration into and analysis of MDO systems. At this point, analogies with particle dynamics and systems of differential equations look particularly promising for both the wealth of extant background theory that they have and the potential predictive and evaluative power that they hold. © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their potential for significant fuel consumption savings, Counter-Rotating Open Rotors (CRORs) are currently being considered as an alternative to high-bypass turbofans. When CRORs are mounted on an aircraft, several 'installation effects' arise which are not present when the engine is operated in isolation. This paper investigates how flow features arising from one such effect - The angle-of-attack of the engine centre-line relative to the oncoming flow - can influence the design of CROR engines. Three-dimensional full-annulus unsteady CFD simulations are used to predict the time-varying flow field experienced by each rotor and emphasis is put on the interaction of the frontrotor wake and tip vortex with the rear-rotor. A parametric study is presented that quantifies the rotorrotor interaction as a function of the angle-of-attack. It is shown that angle-of-attack operation significantly changes the flow field and the unsteady lift on both rotors. In particular, a frequency analysis shows that the unsteady lift exhibits sidebands around the rotor-rotor interaction frequencies. Further, a non-linear increase in the total rear-rotor tip unsteadiness is observed for moderate and high angles-of-attack. The results presented in this paper demonstrate that common techniques used to mitigate CROR noise, such as modifying the rotor-rotor axial spacing and rear-rotor crop, can not be applied correctly unless angle-of-attack effects are taken into account. Copyright © 2012 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crosstalk between naive nucleus and maternal factors deposited in egg cytoplasm before zygotic genome activation is crucial for early development. In this study, we utilized two laboratory fishes, zebrafish (Danio rerio) and Chinese rare minnow and Chinese rare minnow (Gobiocypris rarus), to obtain mutual crossbred embroys and examine the interaction between nucleus and egg cytoplasm from different species. Although these two types of crossbred embryos originated from common nuclei, various developmental capacities were gained due to different origins of the egg cytoplasm. Using cDNA amplified fragment length polymorphism (cDNA-AFLP), We Compared transcript profiles between the mutual crossbred embryos at two developmental stages (50%- and 90%-epiholy). Three thousand cDNA fragments were generated in four cDNA pools with 64 primer combinations. All differently displayed transcript-derived fragments (TDFs) were screened by (lot blot hybridization, and the selected sequences were further analyzed by semi-quantitative RT-PCR and quantitative real-time RT-PCR. Compared with ZR embryos, 12 genes were up-regulated and 12 were down-regulated in RZ embryos. The gene fragments were sequenced and subjected to BLASTN analysis. The sequences encoded various proteins which functioned at various levels of proliferation, growth, and development. One gene (ZR6), dramatically down-regulated in RZ embryos, was chosen for loss-of-function study; the knockdown of ZR6 gave rise to the phenotype resembling that of RZ embryos. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathogenic process of highly pathogenic avian influenza virus (HPAIV) infection is poorly understood. To explore the differential expression of kidney genes as a result of HPAIV infection, two cDNA libraries were constructed from uninfected and infected kidneys by suppression subtractive hybridization (SSH). Fifteen genes including IFN-stimulated genes (ISG12), lymphocyte antigen 6 complex locus E gene (LY6E), matrix Gla protein gene (MGP), lysozyme gene, haemopoiesis related membrane protein I gene, KIAA1259, MGC68696, G6pe-prov protein gene (G6PC), MGC4504, alcohol dehydrogenase gene (ADH), glutathione S-transferase gene (GST), sodium-dependent high-affinity dicarboxylate transporter gene (SDCT), Synaptotagmin XV (SytXV) and two novel genes were found significantly up-regulated or dramatically suppressed. Differential expression of these genes was further identified by Northern blot. Functional analysis indicated that the regulation of their expression might contribute to the pathogenic process of HPAIV infection. In contrast, the increased expression of three IFN-stimulated genes named ISG12, LY6E, and haemopoiesis related membrane protein 1 gene might reflect host defense responses. Further study showed that ISG12 protein failed to directly interact with NS1 protein of HPAIV which expressed simultaneously in the organs where HPAIV replication occurred, by use of BacterioMatch two-hybrid system. Therefore, our findings may provide new insights into understanding the molecular mechanism underlying the pathophysiological process of HPAIV infection in chicken. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Essential ingredients for fault-tolerant control are the ability to represent system behaviour following the occurrence of a fault, and the ability to exploit this representation for deciding control actions. Gaussian processes seem to be very promising candidates for the first of these, and model predictive control has a proven capability for the second. We therefore propose to use the two together to obtain fault-tolerant control functionality. Our proposal is illustrated by several reasonably realistic examples drawn from flight control. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lyapunov's second theorem is an essential tool for stability analysis of differential equations. The paper provides an analog theorem for incremental stability analysis by lifting the Lyapunov function to the tangent bundle. The Lyapunov function endows the state-space with a Finsler structure. Incremental stability is inferred from infinitesimal contraction of the Finsler metrics through integration along solutions curves. © 2013 IEEE.