972 resultados para data link


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Floating ice shelves buttress the flow of grounded tributary glaciers and their thickness and extent are particularly susceptible to changes in both climate and ocean forcing. Recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. However, the extent and magnitude of ice-shelf thickness change, its causes and its link to glacier flow rate are so poorly understood that its influence on the future of the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal for the first time the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary driver of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet that has led to accelerated glacier flow. The highest thinning rates (~7 m/a) occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen Seas and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic Ice Sheet mass balance, and hence global sea-level, on annual to decadal timescales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A unique macroseismic data set for the strongest earthquakes occurred since 1940 in Vrancea region, is constructed by a thorough review of all available sources. Inconsistencies and errors in the reported data and in their use are analyzed as well. The final data set, free from inconsistencies, including those at the political borders, contains 9822 observations for the strong intermediate-depth earthquakes: 1940, Mw=7.7; 1977, Mw=7.4; 1986, Mw=7.1; 1990, May 30, Mw=6.9 and 1990, May 31, Mw=6.4; 2004, Mw=6.0. This data set is available electronically as supplementary data for the present paper. From the discrete macroseismic data the continuous macroseismic field is generated using the methodology developed by Molchan et al. (2002) that, along with the unconventional smoothing method Modified Polynomial Filtering (MPF), uses the Diffused Boundary (DB) method, which visualizes the uncertainty in the isoseismal's boundaries. The comparison of DBs with previous isoseismals maps represents a good evaluation criterion of the reliability of earlier published maps. The produced isoseismals can be used not only for the formal comparison between observed and theoretical isoseismals, but also for the retrieval of source properties and the assessment of local responses (Molchan et al., 2011).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bathymetry based on data recorded during POS317-3 between 19.09.2004 and 13.10.2004 in the Black Sea. This cruise concentrated on bathymetric mapping and mapping of gas seeps by hydro-acoustic detection of gas flares in the water column and the quantification of microbial turnover of gassy sediments and microbial mats. The major objective during POS317-3 was the characterization and identification of microorganisms involved in the anaerobic methane oxidation in the sediment and in microbial mats. As part of these investigations characteristic organic molecules will be identified, which can be used as biomarkers for anaerobic methane oxidizing microorganisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ground surface temperature is one of the key parameters that determine the thermal regime of permafrost soils in arctic regions. Due to remoteness of most permafrost areas, monitoring of the land surface temperature (LST) through remote sensing is desirable. However, suitable satellite platforms such as MODIS provide spatial resolutions, that cannot resolve the considerable small-scale heterogeneity of the surface conditions characteristic for many permafrost areas. This study investigates the spatial variability of summer surface temperatures of high-arctic tundra on Svalbard, Norway. A thermal imaging system mounted on a mast facilitates continuous monitoring of approximately 100 x 100 m of tundra with a wide variability of different surface covers and soil moisture conditions over the entire summer season from the snow melt until fall. The net radiation is found to be a control parameter for the differences in surface temperature between wet and dry areas. Under clear-sky conditions in July, the differences in surface temperature between wet and dry areas reach up to 10K. The spatial differences reduce strongly in weekly averages of the surface temperature, which are relevant for the soil temperature evolution of deeper layers. Nevertheless, a considerable variability remains, with maximum differences between wet and dry areas of 3 to 4K. Furthermore, the pattern of snow patches and snow-free areas during snow melt in July causes even greater differences of more than 10K in the weekly averages. Towards the end of the summer season, the differences in surface temperature gradually diminish. Due to the pronounced spatial variability in July, the accumulated degree-day totals of the snow-free period can differ by more than 60% throughout the study area. The terrestrial observations from the thermal imaging system are compared to measurements of the land surface temperature from the MODIS sensor. During periods with frequent clear-sky conditions and thus a high density of satellite data, weekly averages calculated from the thermal imaging system and from MODIS LST agree within less than 2K. Larger deviations occur when prolonged cloudy periods prevent satellite measurements. Futhermore, the employed MODIS L2 LST data set contains a number of strongly biased measurements, which suggest an admixing of cloud top temperatures. We conclude that a reliable gap filling procedure to moderate the impact of prolonged cloudy periods would be of high value for a future LST-based permafrost monitoring scheme. The occurrence of sustained subpixel variability of the summer surface temperature is a complicating factor, whose impact needs to be assessed further in conjunction with other spatially variable parameters such as the snow cover and soil properties.