975 resultados para cystic upper lobe radiological lesions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background - Normal subjects have a negative nasal transmucosal potential difference (TPD) at rest which becomes more negative with exercise. Patients with cystic fibrosis have a more negative resting nasal TPD than controls. The present study was designed to determine the effects of exercise on the TPD of patients with cystic fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Masses and progenitor evolutionary states of Type II supernovae remain almost unconstrained by direct observations. Only one robust observation of a progenitor (SN 1987A) and one plausible observation (SN 1993J) are available. Neither matched theoretical predictions, and in this Letter we report limits on a third progenitor (SN 1999gi). The Hubble Space Telescope (HST) has imaged the site of the Type II-P supernova SN 1999gi with the Wide Field Planetary Camera 2 (WFPC2) in two filters (F606W and F300W) prior to explosion. The distance to the host galaxy (NGC 3184) of 7.9 Mpc means that the most luminous, massive stars are resolved as single objects in the archive images. The supernova occurred in a resolved, young OB association 2.3 kpc from the center of NGC 3184 with an association age of about 4 Myr. Follow-up images of SN 1999gi with WFPC2 taken 14 months after discovery determine the precise position of the supernova on the preexplosion frames. An upper limit of the absolute magnitude of the progenitor is estimated (M-v greater than or equal to -5.1). By comparison with stellar evolutionary tracks, this can be interpreted as a stellar mass, and we determine an upper mass limit of 9(-2)(+3) M.. We discuss the possibility of determining the masses or mass limits for numerous nearby core-collapse supernovae using the HST archive enhanced by our current SNAP program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent track structure modelling studies indicate that radiation induced damage to DNA consists of a spectrum of different lesions of varying complexity. There is considerable evidence to suggest that, in repair-proficient systems, it is only the small proportion of more complex forms that is responsible for most of the biological effect. The complex lesions induced consist initially of clustered radical sites and a knowledge of their special chemistry is important in modelling how they react to form the more stable products that are processed by the repair systems. However, much of the current understanding of the chemical stage of radiation has developed from single-radical systems and there is a need to translate this to the more complex reactions that are likely to occur at the important multiple radical sites. With low LET radiation, DNA dsb may derive either from single-radical attack that damages both strands by a transfer mechanism, or from pairs of radical sites induced in close proximity, with one or more radical on each strand. With high LET radiation, modelling studies indicate that there is an increased probability of dsb arising from sites with more than two radical centres, leading to a greater frequency of more complex types of break. The spectrum of these lesions depends on the overall outcome of consecutive physical and chemical processes. The initial pattern of radical damage is determined by the energy depositions on and around the DNA, according to the type of radiation. This pattern is then modified by scavengers that inhibit the formation of radicals on the DNA, and by agents that either chemically repair (e.g. thiols) or fix (e.g. oxygen) a large fraction of these radicals. The reaction kinetics associated with clustered radical sites will differ from those of single sites: (1) because of the opportunities for interactions between the radicals themselves; and (2) because certain endpoints, e.g. a dsb, may require a combination of the products of two or more radicals. Fast response techniques using pulsed low and high LET irradiation have been established to measure the reactions of radical sites on pBR322 plasmid DNA with oxygen and thiols with a view to obtaining information about cluster size. This paper describes experimental approaches to explore the role of the chemical stage of the radiation effect in relation to lesion complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is the most common inherited lethal disease in Caucasians which results in multiorgan dysfunction. However, 85% of the deaths are due to pulmonary infections. Infection by Burkholderia cenocepacia (B. cepacia) is a particularly lethal threat to CF patients because it causes severe and persistent lung inflammation and is resistant to nearly all available antibiotics. In CFTR Delta F508 (Delta F508) mouse macrophages, B. cepacia persists in vacuoles that do not fuse with the lysosomes and mediates increased production of IL-1 beta. It is believed that intracellular bacterial survival contributes to the persistence of the bacterium. Here we show for the first time that in wild-type but not in Delta F508 macrophages, many B. cepacia reside in autophagosomes that fuse with lysosomes at later stages of infection. Accordingly, association and intracellular survival of B. cepacia are higher in CFTR-Delta F508 macrophages than in WT macrophages. An autophagosome is a compartment that engulfs nonfunctional organelles and parts of the cytoplasm then delivers them to the lysosome for degradation to produce nutrients during periods of starvation or stress. Furthermore, we show that B. cepacia downregulates autophagy genes in WT and Delta F508 macrophages. However, autophagy dysfunction is more pronounced in Delta F508 macrophages since they already have compromised autophagy activity. We demonstrate that the autophagy-stimulating agent, rapamycin markedly decreases B. cepacia infection in vitro by enhancing the clearance of B. cepacia via induced autophagy. In vivo, rapamycin decreases bacterial burden in the lungs of CF mice and drastically reduces signs of lung inflammation. Together, our studies reveal that if efficiently activated, autophagy can control B. cepacia infection and ameliorate the associated inflammation. Therefore, autophagy is a novel target for new drug development for CF patients to control B. cepacia infection and accompanying inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cystic fibrosis transmembrane conductance regulator (CFTR) has been proposed as an epithelial cell receptor for the entry of Salmonella Typhi but not Salmonella Typhimurium. The bacterial ligand recognized by CM is thought to reside either in the S. Typhi lipopolysaccharide core region or in the type IV pili. Here, we assessed the ability of virulent strains of S. Typhi and S. Typhimurium to adhere to and invade BHK epithelial cells expressing either the wild-type CFTR protein or the Delta F508 CFTR mutant. Both S. Typhi and S. Typhimurium invaded the epithelial cells in a CFTR-independent fashion. Furthermore and also in a CFTR-independent manner, a S. Typhi pilS mutant adhered normally to BHK cells but displayed a 50% reduction in invasion as compared to wild-type bacteria. Immunofluorescence microscopy revealed that bacteria and CFTR do not colocalize at the epithelial cell surface. Together, our results strongly argue against the established dogma that CFTR is a receptor for entry of Salmonella to epithelial cells. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Burkholderia cepacia complex (Bcc) is a group of opportunistic bacteria chronically infecting the airways of patients with cystic fibrosis (CF). Several laboratories have shown that Bcc members, in particular B. cenocepacia, survive within a membrane-bound vacuole inside phagocytic and epithelial cells. We have previously demonstrated that intracellular B. cenocepacia causes a delay in phagosomal maturation, as revealed by impaired acidification and slow accumulation of the late phagolysosomal marker LAMP-1. In this study, we demonstrate that uninfected cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages or normal macrophages treated with a CFTR-specific drug inhibitor display normal acidification. However, after ingestion of B. cenocepacia, acidification and phagolysosomal fusion of the bacteria-containing vacuoles occur in a lower percentage of CFTR-negative macrophages than CFTR-positive cells, suggesting that loss of CFTR function contributes to enhance bacterial intracellular survival. The CFTR-associated phagosomal maturation defect was absent in macrophages exposed to heat-inactivated B. cenocepacia and macrophages infected with a non-CF pathogen such as Salmonella enterica, an intracellular pathogen that once internalized rapidly traffics to acidic compartments that acquire lysosomal markers. These results suggest that not only a defective CFTR but also viable B. cenocepacia are required for the altered trafficking phenotype. We conclude that CFTR may play a role in the mechanism of clearance of the intracellular infection, as we have shown before that B. cenocepacia cells localized to the lysosome lose cell envelope integrity. Therefore, the prolonged maturation arrest of the vacuoles containing B. cenocepacia within cftr(-/-) macrophages could be a contributing factor in the persistence of the bacteria within CF patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an opportunistic bacterium that infects patients with cystic fibrosis. B. cenocepacia strains J2315, K56-2, C5424, and BC7 belong to the ET12 epidemic clone, which is transmissible among patients. We have previously shown that transposon mutants with insertions within the O antigen cluster of strain K56-2 are attenuated for survival in a rat model of lung infection. From the genomic DNA sequence of the O antigen-deficient strain J2315, we have identified an O antigen lipopolysaccharide (LPS) biosynthesis gene cluster that has an IS402 interrupting a predicted glycosyltransferase gene. A comparison with the other clonal isolates revealed that only strain K56-2, which produced O antigen and displayed serum resistance, lacked the insertion element inserted within the putative glycosyltransferase gene. We cloned the uninterrupted gene and additional flanking sequences from K56-2 and conjugated this plasmid into strains J2315, C5424, and BC7. All the exconjugants recovered the ability to form LPS O antigen. We also determined that the structure of the strain K56-2 O antigen repeat, which was absent from the LPS of strain J2315, consisted of a trisaccharide unit made of rhamnose and two N-acetylgalactosamine residues. The complexity of the gene organization of the K56-2 O antigen cluster was also investigated by reverse transcription-PCR, revealing several transcriptional units, one of which also contains genes involved in lipid A-core oligosaccharide biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although cystic fibrosis pulmonary infection is polymicrobial, routine laboratory methods focus on the detection of a small number of known pathogens. Recently, the use of strict anaerobic culture techniques and molecular technologies have identified other potential pathogens including anaerobic bacteria. Determining the role of all bacteria in a complex bacterial community and how they interact is extremely important; individual bacteria may affect how the community develops, possess virulence factors, produce quorum-sensing signals, stimulate an immune response or transfer antibiotic resistance genes, which could all contribute to disease progression. There are many challenges to managing cystic fibrosis lung infection but as knowledge about the airway microbiome continues to increase, this may lead to advances in the therapeutic management of the disease. © 2011 Future Medicine Ltd.