913 resultados para cyber-physical systems
Resumo:
Indoor positioning has become an emerging research area because of huge commercial demands for location-based services in indoor environments. Channel State Information (CSI) as a fine-grained physical layer information has been recently proposed to achieve high positioning accuracy by using range-based methods, e.g., trilateration. In this work, we propose to fuse the CSI-based ranges and velocity estimated from inertial sensors by an enhanced particle filter to achieve highly accurate tracking. The algorithm relies on some enhanced ranging methods and further mitigates the remaining ranging errors by a weighting technique. Additionally, we provide an efficient method to estimate the velocity based on inertial sensors. The algorithms are designed in a network-based system, which uses rather cheap commercial devices as anchor nodes. We evaluate our system in a complex environment along three different moving paths. Our proposed tracking method can achieve 1:3m for mean accuracy and 2:2m for 90% accuracy, which is more accurate and stable than pedestrian dead reckoning and range-based positioning.
Resumo:
The ability to determine what activity of daily living a person performs is of interest in many application domains. It is possible to determine the physical and cognitive capabilities of the elderly by inferring what activities they perform in their houses. Our primary aim was to establish a proof of concept that a wireless sensor system can monitor and record physical activity and these data can be modeled to predict activities of daily living. The secondary aim was to determine the optimal placement of the sensor boxes for detecting activities in a room. A wireless sensor system was set up in a laboratory kitchen. The ten healthy participants were requested to make tea following a defined sequence of tasks. Data were collected from the eight wireless sensor boxes placed in specific places in the test kitchen and analyzed to detect the sequences of tasks performed by the participants. These sequence of tasks were trained and tested using the Markov Model. Data analysis focused on the reliability of the system and the integrity of the collected data. The sequence of tasks were successfully recognized for all subjects and the averaged data pattern of tasks sequences between the subjects had a high correlation. Analysis of the data collected indicates that sensors placed in different locations are capable of recognizing activities, with the movement detection sensor contributing the most to detection of tasks. The central top of the room with no obstruction of view was considered to be the best location to record data for activity detection. Wireless sensor systems show much promise as easily deployable to monitor and recognize activities of daily living.
Resumo:
Indoor positioning has attracted considerable attention for decades due to the increasing demands for location based services. In the past years, although numerous methods have been proposed for indoor positioning, it is still challenging to find a convincing solution that combines high positioning accuracy and ease of deployment. Radio-based indoor positioning has emerged as a dominant method due to its ubiquitousness, especially for WiFi. RSSI (Received Signal Strength Indicator) has been investigated in the area of indoor positioning for decades. However, it is prone to multipath propagation and hence fingerprinting has become the most commonly used method for indoor positioning using RSSI. The drawback of fingerprinting is that it requires intensive labour efforts to calibrate the radio map prior to experiments, which makes the deployment of the positioning system very time consuming. Using time information as another way for radio-based indoor positioning is challenged by time synchronization among anchor nodes and timestamp accuracy. Besides radio-based positioning methods, intensive research has been conducted to make use of inertial sensors for indoor tracking due to the fast developments of smartphones. However, these methods are normally prone to accumulative errors and might not be available for some applications, such as passive positioning. This thesis focuses on network-based indoor positioning and tracking systems, mainly for passive positioning, which does not require the participation of targets in the positioning process. To achieve high positioning accuracy, we work on some information of radio signals from physical-layer processing, such as timestamps and channel information. The contributions in this thesis can be divided into two parts: time-based positioning and channel information based positioning. First, for time-based indoor positioning (especially for narrow-band signals), we address challenges for compensating synchronization offsets among anchor nodes, designing timestamps with high resolution, and developing accurate positioning methods. Second, we work on range-based positioning methods with channel information to passively locate and track WiFi targets. Targeting less efforts for deployment, we work on range-based methods, which require much less calibration efforts than fingerprinting. By designing some novel enhanced methods for both ranging and positioning (including trilateration for stationary targets and particle filter for mobile targets), we are able to locate WiFi targets with high accuracy solely relying on radio signals and our proposed enhanced particle filter significantly outperforms the other commonly used range-based positioning algorithms, e.g., a traditional particle filter, extended Kalman filter and trilateration algorithms. In addition to using radio signals for passive positioning, we propose a second enhanced particle filter for active positioning to fuse inertial sensor and channel information to track indoor targets, which achieves higher tracking accuracy than tracking methods solely relying on either radio signals or inertial sensors.
Resumo:
Indoor positioning has become an emerging research area because of huge commercial demands for location-based services in indoor environments. Channel State Information (CSI) as fine-grained physical layer information has been recently proposed to achieve high positioning accuracy by using range based methods, e.g., trilateration. In this work, we propose to fuse the CSI-based ranging and velocity estimated from inertial sensors by an enhanced particle filter to achieve highly accurate tracking. The algorithm relies on some enhanced ranging methods and further mitigates the remaining ranging errors by a weighting technique. Additionally, we provide an efficient method to estimate the velocity based on inertial sensors. The algorithms are designed in a network-based system, which uses rather cheap commercial devices as anchor nodes. We evaluate our system in a complex environment along three different moving paths. Our proposed tracking method can achieve 1.3m for mean accuracy and 2.2m for 90% accuracy, which is more accurate and stable than pedestrian dead reckoning and range-based positioning.
Resumo:
One component systems are treated from the point of view of the Gibbs' phase rule.
Resumo:
The role of physical activity in the promotion of individual and population health has been well documented in research and policy publications. Significant research activities have produced compelling evidence for the support of the positive association between physical activity and improved health. Despite the knowledge about these public health benefits of physical activity, over half of US adults do not engage in physical activity at levels consistent with public health recommendations. Just as physical inactivity is of significant public health concern in the US, the prevalence of obesity (and its attendant co-morbidities) is also increasing among US adults.^ Research suggests racial and ethnic disparities relevant to physical inactivity and obesity in the US. Various studies have shown more favorable outcomes among non-Hispanic whites when compared to other minority groups as far as physical activity and obesity are concerned. The health disparity issue is especially important because Mexican-Americans who are the fastest growing segment of the US population are disproportionately affected by physical inactivity and obesity by a significant margin (when compared to non-Hispanic whites), so addressing the physical inactivity and obesity issues in this group is of significant public health concern. ^ Although the evidence for health benefits of physical activity is substantial, various research questions remain on the potential motivators for engaging in physical activity. One area of emerging interest is the potential role that the built environment may play in facilitating or inhibiting physical activity.^ In this study, based on an ongoing research project of the Department of Epidemiology at the University of Texas M. D. Anderson Cancer Center, we examined the built environment, measured objectively through the use of geographical information systems (GIS), and its association with physical activity and obesity among a cohort of Mexican- Americans living in Harris County, Texas. The overall study hypothesis was that residing in dense and highly connected neighborhoods with mixed land-use is associated with residents’ increased participation in physical activity and lowered prevalence of obesity. We completed the following specific aims: (1) to generate a land-use profile of the study area and create a “walkability index” measure for each block group within the study area; (2) to compare the level of engagement in physical activity between study participants that reside in high walkability index block groups and those from low walkability block groups; (3) to compare the prevalence of obesity between study participants that reside in high walkability index block groups and those from low walkability block groups. ^ We successfully created the walkability index as a form of objective measure of the built environment for portions of Harris County, Texas. We used a variety of spatial and non-spatial dataset to generate the so called walkability index. We are not aware of previous scholastic work of this kind (construction of walkability index) in the Houston area. Our findings from the assessment of relationships among walkability index, physical activity and obesity suggest the following, that: (1) that attempts to convert people to being walkers through health promotion activities may be much easier in high-walkability neighborhoods, and very hard in low-walkability neighborhoods. Therefore, health promotion activities to get people to be active may require supportive environment, walkable in this case, and may not succeed otherwise; and (2) Overall, among individuals with less education, those in the high walkability index areas may be less obese (extreme) than those in the low walkability area. To the extent that this association can be substantiated, we – public health practitioners, urban designers, and policy experts – we may need to start thinking about ways to “retrofit” existing urban forms to conform to more walkable neighborhoods. Also, in this population especially, there may be the need to focus special attention on those with lower educational attainment.^