943 resultados para control mechanisms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD4+ T helper (Th) lymphocytes are vital for integrating immune responses by orchestrating the function of other immune cell types. Naïve Th cells can differentiate into different effector subsets that are characterized by their cytokine profile and immune regulatory functions. These subsets include Th1, Th2, Th17, natural and inducible regulatory T cells (nTreg and iTreg respectively), among others. We focused our investigation on two Th lineages, Th17 and regulatory T cells, with opposing functions in the immune system. These subsets have been suggested to be reciprocally regulated since they both require TGF-b for their development. We investigated the role of the Treg-associated master transcription factor Foxp3, and found that Foxp3 inhibits Th17 cell generation by preventing the transcriptional activity of the two main Th17-specific transcription factors, nuclear orphan receptors RORa and RORgt. At the molecular level, we identified two different functional domains in Foxp3 required for such inhibition: the LQALL sequence in exon 2 and the TIP60/HDAC7 binding domain. These domains could be crucial to either prevent the association of the nuclear receptors to coactivators or to recruit histone deacetylases to RORa- or RORgt-target genes. Since TGF-b is a common cytokine required for the commitment towards both Th lineages, we determined the role of the TGF-b-dependent signaling pathway in the generation of each subset. By using mice with deficiencies in signaling molecules downstream of TGF-b, we found that while Smad2, Smad3 and Smad4 are required for the generation of iTreg cells, only Smad2 is indispensable for the induction of IL-17-producing cells, suggesting that TGF-b induces these T helper lineages through differential signaling pathways. Thus, our findings describe novel transcriptional regulatory mechanisms that control the generation of two T helper lineages with opposing functions. These findings could provide novel therapeutic targets to treat diseases where the balance of these T cells is dysregulated, such as in autoimmunity, chronic infectious diseases and cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cellular mechanisms through which adult rat skeletal muscle protein is regulated during resistance exercise and training was investigated. A model of non-voluntary resistance exercise was described which involves the electrically-stimulated contraction of the lower leg muscles of anesthetized rats against a weighted pulley-bar. Muscle protein synthesis rates were measured by in vivo constant infusion of $\sp3$H-leucine following a single bout of resistance exercise. Specific messenger RNA levels were determined by dot-blot hybridization analysis using $\sp{32}$P-labelled DNA probes after a single bout and multiple bouts of phasic training. The effects of phasic training on increasing skeletal muscle mass was assessed. Between 12 and 36 hours following a single resistance exercise bout (24-192 contractions), total mixed and myofibril protein synthesis rates were significantly increase (32%-65%) after concentric (gastrocnemius m.) and eccentric (tibialis anterior m.) contractions. Eccentric contractions had greater effects on myofibril synthesis with more prolonged increases in synthesis rates. Lower numbers of eccentric than concentric contractions were required to increase synthesis. Cellular RNA was increased after exercise but the relative levels of skeletal $\alpha$-actin and cytochrome c mRNAs were unchanged. Since increases in synthesis rates exceeded increases in RNA, post-transcriptional mechanisms may be primarily responsible for increased protein synthesis after a resistance exercise bout. After 10-22 weeks of phasic eccentric resistance training, muscle enlargement (16%-30%) was produced in the tibialis anterior m. after all training paradigms examined. In contrast, gastrocnemius m. enlargement after phasic concentric training occurred after moderate (24/bout) but not after high (192/bout) repetition training. The absence of muscle growth in the gastrocnemius m. after high repetition training despite increased synthesis rates after the initial bout and RNA and possibly mRNA accumulation during training suggests a role for post-translational mechanisms (protein degradation) in the control of muscle growth in the gastrocnemius m. It is concluded that muscle protein during resistance exercise and training is regulated at several cellular levels. The particular response may be influenced by the exercise intensity and duration, the training frequency and the type of contractile work (eccentric vs. concentric) performed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone remodeling is controlled by the osteoclast, which resorbs bone, and the osteoblast, which synthesizes and secretes proteins that are eventually mineralized into bone. Ca$\sp{2+}$ homeostasis and signaling contribute to the function of nearly all cell types, and understanding both in the osteoblast is of importance given its secretory properties and interaction with osteoclasts. This study was undertaken to identify and investigate the physiology of the Ca$\sp{2+}$ signaling mechanisms present in osteoblasts. The Ca$\sp{2+}$ pumps, stores and channels present in osteoblasts were studied. RT-PCR cloning revealed that osteoblast-like cells express PMCA1b, an alternatively spliced transcript of the plasma membrane Ca$\sp{2+}$-ATPase. The PMCA1b isoform contains a consensus phosphorylation site for cAMP-dependent protein kinase A and a modified calmodulin binding domain. The regulation of osteoblast function by agents that act via cAMP-mediated pathways may involve alterations in the activity of the plasma membrane Ca$\sp{2+}$-ATPase.^ Calcium release from intracellular stores is a signaling mechanism used universally by cells responding to hormones and growth factors, and the compartmentalization and regulated release of calcium is cell-type specific. Fura-2 was employed to monitor intracellular Ca$\sp{2+}$. Thapsigargin and 2,5,-di-(tert-butyl)-1,4-benzohydroquinone (tBuHQ), two inhibitors of endoplasmic reticulum Ca$\sp{2+}$-ATPase activity, both emptied a single intracellular calcium pool which was released in response to either ATP or thrombin, identifying it as the inositol 1,4,5-trisphosphate-sensitive calcium store. The Ca$\sp{2+}$ storage system present in osteoblasts is typical of a non-excitable cell type, despite these cells sharing characteristics of excitable cells such as voltage-sensitive Ca$\sp{2+}$ channels (VSCCs).^ VSCCs are important cell surface regulators of membrane permeability to Ca$\sp{2+}$. In non-excitable cells VSCCs act as cellular transducers of stimulus-secretion coupling, activators of intracellular proteins, and in control of cell growth and differentiation. Functional VSCCs have been shown to exist in osteoblasts, however, no molecular cloning has been reported. To obtain information concerning the molecular identity of the osteoblastic VSCC, we used an RT-PCR regional amplification approach. Sequencing of the products indicated that osteoblasts express at least two isoforms of the L-type VSCC, $\alpha 1\sb{\rm C-a}$ and the $\alpha 1\sb{\rm C-d}$, which share regions of identity to the $\alpha \sb{\rm 1C}$ isoform first identified in cardiac myocytes. The ability of $1,25(\rm OH)\sb2D\sb3$ and structural analogs to modulate expression of Ca$\sp{2+}$ channel mRNA was then investigated. Cells were cultured for 48 hr in the presence of $1,25(\rm OH)\sb2D\sb3$ or vitamin D analogs, and the levels of mRNA encoding VSCC $\alpha \sb{\rm 1C}$ were quantitated using a competitive RT-PCR assay. It was found that $1,25(\rm OH)\sb2D\sb3$ and analog BT reduced steady state levels of $\alpha \sb{\rm 1C}$ mRNA. Conversely, analog AT did not alter steady state levels of Ca$\sp{2+}$ channel mRNA. Since it has been shown previously that analog BT, but not AT, binds and activates the nuclear vitamin D receptor, these findings suggest that the down regulation of channel mRNA involves the nuclear receptor for $1,25(\rm OH)\sb2D\sb3$. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type II collagen is a major chondrocyte-specific component of the cartilage extracellular matrix and it represents a typical differentiation marker of mature chondrocytes. In order to delineate cis-acting elements of the mouse pro$\alpha1$(II) collagen gene that control chondrocyte-specific expression in intact mouse embryos, we generated transgenic mice harboring chimeric constructions in which varying lengths of the promoter and intron 1 sequences were linked to a $\beta$-galactosidase reporter gene. A construction containing a 3000-bp promoter and a 3020-bp intron 1 fragment directed high levels of $\beta$-galactosidase expression specifically to chondrocytes. Successive deletions of intron 1 delineated a 48-bp fragment which targeted $\beta$-galactosidase expression to chondrocytes with the same specificity as the larger intron 1 fragment. When the Col2a1 promoter was replaced with a minimal $\beta$-globin promoter, the 48-bp intron 1 sequence was still able to target expression of the transgene to chondrocytes, specifically. Therefore a 48-bp intron 1 DNA segment of the mouse Col2a1 gene contains the necessary information to confer high-level, temporally correct, chondrocyte expression to a reporter gene in intact mouse embryos and that Col2a1 promoter sequences are dispensable for chondrocyte expression. Nuclear proteins present selectively in mouse primary chondrocytes and rat chondrosarcoma cells bind to the three putative HMG (High-Mobility-Group) domain protein binding sites in this 48-bp sequence and the chondrocyte-specific proteins likely bind the DNA through minor groove. Together, my results indicate that a 48-bp sequence in Col2a1 intron 1 controls chondrocyte-specific expression in vivo and suggest that chondrocytes contain specific nuclear proteins involved in enhancer activity. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacillus anthracis plasmid pXO1 carries genes for three anthrax toxin proteins, pag (protective antigen), cya (edema factor), and lef (lethal factor). Expression of the toxin genes is enhanced by two signals: CO$\sb2$/bicarbonate and temperature. The CO$\sb2$/bicarbonate effect requires the presence of pXO1. I hypothesized that pXO1 harbors a trans-acting regulatory gene(s) required for CO$\sb2$/bicarbonate-enhanced expression of the toxin genes. Characterization of such a gene(s) will lead to increased understanding of the mechanisms by which B. anthracis senses and responds to host environments.^ A regulatory gene (atxA) on pXO1 was identified. Transcription of all three toxin genes is decreased in an atxA-null mutant. There are two transcriptional start sites for pag. Transcription from the major site, P1, is enhanced in elevated CO$\sb2$. Only P1 transcripts are significantly decreased in the atxA mutant. Deletion analysis of the pag upstream region indicates that the 111-bp region upstream of the P1 site is sufficient for atxA-mediated increase of this transcript. The cya and lef genes each have one apparent transcriptional start site. The cya and lef transcripts are significantly decreased in the atxA mutant. The atxA mutant is avirulent in mice. The antibody response to all three toxin proteins is significantly decreased in atxA mutant-infected mice. These data suggest that the atxA gene product activates expression of the toxin genes and is essential for virulence.^ Since expression of the toxin genes is dependent on atxA, whether increased toxin gene expression in response to CO$\sb2$/bicarbonate and temperature is associated with increased atxA expression was investigated. I monitored steady state levels of atxA mRNA and AtxA protein in different growth conditions. The results indicate that expression of atxA is not influenced by CO$\sb2$/bicarbonate. Steady state levels of atxA mRNA and AtxA protein are higher at 37$\sp\circ$C than 28$\sp\circ$C. However, increased pag expression at high temperature can not be attributed directly to increased atxA expression.^ There is evidence that an additional factor(s) may be involved in regulation of pag. Expression of pag in strains overproducing AtxA is significantly decreased compared to the wildtype strain. A specific interaction of tagged-AtxA with the pag upstream DNA has not been demonstrated. Furthermore, four proteins in B. anthracis extract can be co-immunoprecipitated with tagged-AtxA. Amino-terminal sequence of one protein has been determined and found highly homologous to chaperonins of GroEL family. Studies are under way to determine if this GroEL-like protein interactions with AtxA and plays any role in atxA-mediated activation of toxin genes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steroid hormones regulate target cell function via quantitative and qualitative changes in RNA and protein synthesis. In the testis, androgens are known to play an important role in the regulation of spermatogenesis. The Sertoli cell (SC), whose function is thought to be supportive to the developing germ cell, has been implicated as an androgen target cell. Although cytoplasmic androgen receptors and chromatin acceptor sites for androgen-receptor complexes have been found in SC, effects on RNA synthesis have not previously been demonstrated. In this study, SC RNA synthetic activity was characterized and the effect of testosterone on SC nuclear transcriptional activity in vitro assessed. SC exhibited two fold increases in RNA and ribonucleotide pool concentrations during sexual maturation. These changes appeared to correlate with a previously observed increase in protein concentration per cell over an age span of 15-60 days. Following incubation with ('3)H-uridine, SC from older animals incorporated more label into RNA than SC from younger animals. Since the relative concentration of cytidine nucleotides was higher in SC from older rats, the age-related increase in tritium incorporation may reflect an associated increase in incorporation of ('3)H-CMP into RNA. Alternatively, the enhanced labeling may be the result of either a change in the base composition of the RNA resulting in a higher proportion of CMP and UMP in the RNA, or compartmentalization of the nucleotide pools. The physiologic consequences of these maturational alterations of nucleotide pools remains to be elucidated. RNA polymerase activities were characterized in intact nuclei obtained from cultured rat SC. (alpha)-Amanitin resistant RNA polymerase I+III activity was identical when measured in low or high ionic strength (0.05 M or 0.25 M ammonium sulfate (AS)) in the presence of MnCl(,2) or MgCl(,2), with a divalent cation optimum of 1.6 mM. RNA polymerase II was most active in 0.25 M AS and 1.6 mM MnCl(,2). The apparent Km of RNA polymerase II for UTP was 0.016 mM in 0.05 M AS and 0.037 mM in 0.25 M AS. The apparent Km values for total polymerase activity was 0.008 mM and 0.036 mM at low and high ionic strenghts, respectively. These data indicate that Sertoli cell RNA polymerase activities have catalytic properties characteristic of eukaryotic polymerase activities in general. In the presence of 21 (mu)M testosterone, RNA polymerase II activity increased two fold at 15 minutes, then declined but was still elevated over control values six hours after androgen addition. Polymerase I+III activity was not greatly affected by testosterone. The stimulation of polymerase II measured at 15 minutes was dose-dependent, with a maximum at 0.53 nM and no further stimulation up to 10('-5) M (ED(,50) = 0.25 nM testosterone), and was androgen specific. The results of preliminary RNA isolation and characterization experiments suggested that the synthesis of several species of RNA was enhanced by testosterone administration. These findings have great potential importance since they represent the first demonstration of a direct effect of androgens on the transcriptional process in the Sertoli cell. Furthermore, the results of these studies constitute further evidence that the Sertoli cell is a target for androgen action in the testis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-control is defined as the process in which thoughts, emotions, or prepotent responses are inhibited to efficiently enact a more focal goal. Self-control not only allows for more adaptive individual decision making but also promotes adaptive social decision making. In this chapter, we examine a burgeoning area of interdisciplinary research: the neuroscience of self-control in social decision making. We examine research on self-control in complex social contexts examined from a social neuroscience perspective. We review correlational evidence from neuroimaging studies and causal evidence from neuromodulation studies (i.e., brain stimulation). We specifically highlight research that shows that self-control involves the lateral prefrontal cortex (PFC) across a number of social domains and behaviors. Research has also begun to directly integrate nonsocial with social forms of self-control, showing that the basic neurobiological processes involved in stopping a motor response appear to be involved in social contexts that require self-control. Further, neural traits, such as baseline activation in the lateral PFC, can explain sources of individual differences in self-control capacity. We explore whether techniques that change brain functioning could target neural mechanisms related to self-control capacity to potentially enhance self-control in social behavior. Finally, we discuss several research questions ripe for examination. We broadly suggest that future research can now turn to exploring how neural traits and situational affordances interact to impact self-control in social decision making in order to continue to elucidate the processes that allow people to maintain and realize stable goals in a dynamic and often uncertain social environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A growing number of studies in humans demonstrate the involvement of vestibular information in tasks that are seemingly remote from well-known functions such as space constancy or postural control. In this review article we point out three emerging streams of research highlighting the importance of vestibular input: (1) Spatial Cognition: Modulation of vestibular signals can induce specific changes in spatial cognitive tasks like mental imagery and the processing of numbers. This has been shown in studies manipulating body orientation (changing the input from the otoliths), body rotation (changing the input from the semicircular canals), in clinical findings with vestibular patients, and in studies carried out in microgravity. There is also an effect in the reverse direction; top-down processes can affect perception of vestibular stimuli. (2) Body Representation: Numerous studies demonstrate that vestibular stimulation changes the representation of body parts, and sensitivity to tactile input or pain. Thus, the vestibular system plays an integral role in multisensory coordination of body representation. (3) Affective Processes and Disorders: Studies in psychiatric patients and patients with a vestibular disorder report a high comorbidity of vestibular dysfunctions and psychiatric symptoms. Recent studies investigated the beneficial effect of vestibular stimulation on psychiatric disorders, and how vestibular input can change mood and affect. These three emerging streams of research in vestibular science are—at least in part—associated with different neuronal core mechanisms. Spatial transformations draw on parietal areas, body representation is associated with somatosensory areas, and affective processes involve insular and cingulate cortices, all of which receive vestibular input. Even though a wide range of different vestibular cortical projection areas has been ascertained, their functionality still is scarcely understood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the preferential timescales of variability in the North Atlantic, usually associated with the Atlantic meridional overturning circulation (AMOC), is essential for the prospects for decadal prediction. However, the wide variety of mechanisms proposed from the analysis of climate simulations, potentially dependent on the models themselves, has stimulated the debate of which processes take place in reality. One mechanism receiving increasing attention, identified both in idealized models and observations, is a westward propagation of subsurface buoyancy anomalies that impact the AMOC through a basin-scale intensification of the zonal density gradient, enhancing the northward transport via thermal wind balance. In this study, we revisit a control simulation from the Institut Pierre-Simon Laplace Coupled Model 5A (IPSL-CM5A), characterized by a strong AMOC periodicity at 20 years, previously explained by an upper ocean–atmosphere–sea ice coupled mode driving convection activity south of Iceland. Our study shows that this mechanism interacts constructively with the basin-wide propagation in the subsurface. This constructive feedback may explain why bi-decadal variability is so intense in this coupled model as compared to others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Cardiac myocytes utilize three high-capacity Na transport processes whose precise function can determine myocyte fate and the triggering of arrhythmias in pathological settings. We present recent results on the regulation of all three transporters that may be important for an understanding of cardiac function during ischemia/reperfusion episodes. METHODS AND RESULTS Refined ion selective electrode (ISE) techniques and giant patch methods were used to analyze the function of cardiac Na/K pumps, Na/Ca exchange (NCX1), and Na/H exchange (NHE1) in excised cardiac patches and intact myocytes. To consider results cohesively, simulations were developed that account for electroneutrality of the cytoplasm, ion homeostasis, water homeostasis (i.e., cell volume), and cytoplasmic pH. The Na/K pump determines the average life-time of Na ions (3-10 minutes) as well as K ions (>30 minutes) in the cytoplasm. The long time course of K homeostasis can determine the time course of myocyte volume changes after ion homeostasis is perturbed. In excised patches, cardiac Na/K pumps turn on slowly (-30 seconds) with millimolar ATP dependence, when activated for the first time. In steady state, however, pumps are fully active with <0.2 mM ATP and are nearly unaffected by high ADP (2 mM) and Pi (10 mM) concentrations as may occur in ischemia. NCX1s appear to operate with slippage that contributes to background Na influx and inward current in heart. Thus, myocyte Na levels may be regulated by the inactivation reactions of the exchanger which are both Na- and proton-dependent. NHE1 also undergo strong Na-dependent inactivation, whereby a brief rise of cytoplasmic Na can cause inactivation that persists for many minutes after cytoplasmic Na is removed. This mechanism is blocked by pertussis toxin, suggesting involvement of a Na-dependent G-protein. Given that maximal NCX1- and NHE1-mediated ion fluxes are much greater than maximal Na/K pump-mediated Na extrusion in myocytes, the Na-dependent inactivation mechanisms of NCX1 and NHE1 may be important determinants of cardiac Na homeostasis. CONCLUSIONS Na/K pumps appear to be optimized to continue operation when energy reserves are compromised. Both NCX1 and NHE1 activities are regulated by accumulation of cytoplasmic Na. These principles may importantly control cardiac cytoplasmic Na and promote myocyte survival during ischemia/reperfusion episodes by preventing Ca overload.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cochlear implants are neuroprostheses that are inserted into the inner ear to directly electrically stimulate the auditory nerve, thus replacing lost cochlear receptors, the hair cells. The reduction of the gap between electrodes and nerve cells will contribute to technological solutions simultaneously increasing the frequency resolution, the sound quality and the amplification of the signal. Recent findings indicate that neurotrophins (NTs) such as brain derived neurotrophic factor (BDNF) stimulate the neurite outgrowth of auditory nerve cells by activating Trk receptors on the cellular surface (1–3). Furthermore, small-size TrkB receptor agonists such as di-hydroxyflavone (DHF) are now available, which activate the TrkB receptor with similar efficiency as BDNF, but are much more stable (4). Experimentally, such molecules are currently used to attract nerve cells towards, for example, the electrodes of cochlear implants. This paper analyses the scenarios of low dose aspects of controlled release of small-size Trk receptor agonists from the coated CI electrode array into the inner ear. The control must first ensure a sufficient dose for the onset of neurite growth. Secondly, a gradient in concentration needs to be maintained to allow directive growth of neurites through the perilymph-filled gap towards the electrodes of the implant. We used fluorescein as a test molecule for its molecular size similarity to DHF and investigated two different transport mechanisms of drug dispensing, which both have the potential to fulfil controlled low-throughput drug-deliverable requirements. The first is based on the release of aqueous fluorescein into water through well-defined 60-μm size holes arrays in a membrane by pure osmosis. The release was both simulated using the software COMSOL and observed experimentally. In the second approach, solid fluorescein crystals were encapsulated in a thin layer of parylene (PPX), hence creating random nanometer-sized pinholes. In this approach, the release occurred due to subsequent water diffusion through the pinholes, dissolution of the fluorescein and then release by out-diffusion. Surprisingly, the release rate of solid fluorescein through the nanoscopic scale holes was found to be in the same order of magnitude as for liquid fluorescein release through microscopic holes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The levels of histone mRNA increase 35-fold as selectively detached mitotic CHO cells progress from mitosis through G1 and into S phase. Using an exogenous gene with a histone 3' end which is not sensitive to transcriptional or half-life regulation, we show that 3' processing is regulated as cells progress from G1 to S phase. The half-life of histone mRNA is similar in G1- and S-phase cells, as measured after inhibition of transcription by actinomycin D (dactinomycin) or indirectly after stabilization by the protein synthesis inhibitor cycloheximide. Taken together, these results suggest that the change in histone mRNA levels between G1- and S-phase cells must be due to an increase in the rate of biosynthesis, a combination of changes in transcription rate and processing efficiency. In G2 phase, there is a rapid 35-fold decrease in the histone mRNA concentration which our results suggest is due primarily to an altered stability of histone mRNA. These results are consistent with a model for cell cycle regulation of histone mRNA levels in which the effects on both RNA 3' processing and transcription, rather than alterations in mRNA stability, are the major mechanisms by which low histone mRNA levels are maintained during G1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous insect herbivores can take up and store plant toxins as self-defense against their own natural enemies. Plant toxin sequestration is tightly linked with tolerance strategies that keep the toxins functional. Specific transporters have been identified that likely allow the herbivore to control the spatiotemporal dynamics of toxin accumulation. Certain herbivores furthermore possess specific enzymes to boost the bioactivity of the sequestered toxins. Ecologists have studied plant toxin sequestration for decades. The recently uncovered molecular mechanisms in combination with transient, non-transgenic systems to manipulate insect gene expression will help to understand the importance of toxin sequestration for food-web dynamics in nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the work performed in this dissertation was to examine some of the possible regulatory mechanisms involved in the initiation of muscular atrophy during periods of decreased muscle utilization resulting from hindlimb immobilization in the rat. A 37% decrease in the rate of total muscle protein synthesis which has been observed to occur in the first 6 h of immobilization contributes significantly to the observed loss of protein during immobilization.^ The rates of cytochrome c and actin synthesis were determined in adult rat red vastus lateralis and gastrocnemius muscles, respectively, by the constant infusion and incorporation of ('3)H-tyrosine into protein. The fractional synthesis rates of both actin and cytochrome c were significantly decreased (P < 0.05) in the 6th h of hindlimb immobilization.^ RHA was extracted from adult rat gastrocnemius muscle by modification of the phenol: chloroform: SDS extraction procedures commonly used for preparation of RNA for hybridization analysis from other mammalian tissues. RNA content of rat gastrocnemius muscle, as determined by this method of extraction and its subsequent quantification by UV absorbance and orcinol assay, was significantly greater than the RNA content previously determined for adult rat gastrocnemius by other commonly employed methods.^ RNA extracted by this method from gastrocnemius muscles of control and 6h immobilized rats was subjected to "dot blot" hybridization to ('32)P-labelled probe from plasmid p749, containing a cDNA sequence complementary to (alpha)-actin mRNA and from rat skeletal muscle. (alpha)-Actin specific mRNA content as estimated by this procedure is not significantly decreased in rat gastrocnemius following 6h or hindlimb immobilization. However, (alpha)-actin specific mRNA content is significantly decreased (P < 0.05) in adult rat gastrocnemius (alpha)-actin specific mRNA is not decreased in adult rat gastrocnemius muscle following 6h of immobilization, a time when actin synthesis is significantly decreased, it is concluded that a change in (alpha)-actin specific mRNA content is not the initiating event responsible for the early decrease in actin synthesis observed in the 6th h of immobilization. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research has been to study the molecular basis for chromosome aberration formation. Predicated on a variety of data, Mitomycin C (MMC)-induced DNA damage has been postulated to cause the formation of chromatid breaks (and gaps) by preventing the replication of regions of the genome prior to mitosis. The basic protocol for these experiments involved treating synchronized Hela cells in G(,1)-phase with a 1 (mu)g/ml dose of MMC for one hour. After removing the drug, cells were then allowed to progress to mitosis and were harvested for analysis by selective detachment. Utilizing the alkaline elution assay for DNA damage, evidence was obtained to support the conclusion that Hela cells can progress through S-phase into mitosis with intact DNA-DNA interstrand crosslinks. A higher level of crosslinking was observed in those cells remaining in interphase compared to those able to reach mitosis at the time of analysis. Dual radioisotope labeling experiments revealed that, at this dose, these crosslinks were associated to the same extent with both parental and newly replicated DNA. This finding was shown not to be the result of a two-step crosslink formation mechanism in which crosslink levels increase with time after drug treatment. It was also shown not to be an artefact of the double-labeling protocol. Using neutral CsCl density gradient ultracentrifugation of mitotic cells containing BrdU-labeled newly replicated DNA, control cells exhibited one major peak at a heavy/light density. However, MMC-treated cells had this same major peak at the heavy/light density, in addition to another minor peak at a density characteristic for light/light DNA. This was interpreted as indicating either: (1) that some parental DNA had not been replicated in the MMC treated sample or; (2) that a recombination repair mechanism was operational. To distinguish between these two possibilities, flow cytometric DNA fluorescence (i.e., DNA content) measurements of MMC-treated and control cells were made. These studies revealed that the mitotic cells that had been treated with MMC while in G(,1)-phase displayed a 10-20% lower DNA content than untreated control cells when measured under conditions that neutralize chromosome condensation effects (i.e., hypotonic treatment). These measurements were made under conditions in which the binding of the drug, MMC, was shown not to interfere with the stoichiometry of the ethidium bromide-mithramycin stain. At the chromosome level, differential staining techniques were used in an attempt to visualize unreplicated regions of the genome, but staining indicative of large unreplicated regions was not observed. These results are best explained by a recombinogenic mechanism. A model consistent with these results has been proposed.^