917 resultados para constant curvature
Resumo:
This study quantitatively investigated the analgesic action of a low-dose constant-rate-infusion (CRI) of racemic ketamine (as a 0.5 mg kg(-1) bolus and at a dose rate of 10 microg kg(-1) min(-1)) in conscious dogs using a nociceptive withdrawal reflex (NWR) and with enantioselective measurement of plasma levels of ketamine and norketamine. Withdrawal reflexes evoked by transcutaneous single and repeated electrical stimulation (10 pulses, 5 Hz) of the digital plantar nerve were recorded from the biceps femoris muscle using surface electromyography. Ketamine did not affect NWR thresholds or the recruitment curves after a single nociceptive stimulation. Temporal summation (as evaluated by repeated stimuli) and the evoked behavioural response scores were however reduced compared to baseline demonstrating the antinociceptive activity of ketamine correlated with the peak plasma concentrations. Thereafter the plasma levels at pseudo-steady-state did not modulate temporal summation. Based on these experimental findings low-dose ketamine CRI cannot be recommended for use as a sole analgesic in the dog.
Resumo:
OBJECTIVE: To determine the minimum alveolar concentration (MAC) of isoflurane in Shetland ponies using a sequence of three different supramaximal noxious stimulations at each tested concentration of isoflurane rather than a single stimulation. STUDY DESIGN: Prospective, experimental trial. ANIMALS: Seven 4-year-old, gelding Shetland ponies. METHODS: The MAC of isoflurane was determined for each pony. Three different modes of electrical stimulation were applied consecutively (2 minute intervals): two using constant voltage (90 V) on the gingiva via needle- (CVneedle) or surface-electrodes (CVsurface) and one using constant current (CC; 40 mA) via surface electrodes applied to the skin over the digital nerve. The ability to clearly interpret the responses as positive, the latency of the evoked responses and the inter-electrode resistance were recorded for each stimulus. RESULTS: Individual isoflurane MAC (%) values ranged from 0.60 to 1.17 with a mean (+/-SD) of 0.97 (+/-0.17). The responses were more clearly interpreted with CC, but did not reach statistical significance. The CVsurface mode produced responses with a longer delay. The CVneedle mode was accompanied by variable inter-electrode resistances resulting in uncontrolled stimulus intensity. At 0.9 MAC, the third stimulation induced more positive responses than the first stimulation, independent of the mode of stimulation used. CONCLUSIONS: The MAC of isoflurane in the Shetland ponies was lower than expected with considerable variability among individuals. Constant current surface electrode stimulations were the most repeatable. A summation over the sequence of three supramaximal stimulations was observed around 0.9 MAC. CLINICAL RELEVANCE: The possibility that Shetland ponies require less isoflurane than horses needs further investigation. Constant current surface-electrode stimulations were the most repeatable. Repetitive supramaximal stimuli may have evoked movements at isoflurane concentrations that provide immobility when single supramaximal stimulation was applied.
Resumo:
Two heifer replacement strategies were compared over a 25-year period. One strategy retained the same number of heifers each year to maintain a constant herd size. The second strategy retained the same dollar value of heifer calves each year based on their opportunity cost as feeder calves. The constant investment strategy herd size varied throughout the period, but generated higher average profit and higher net worth than did the constant herd size strategy. Constant investment is a simple strategy to adjust the level of investment in beef cows and the resource base (pasture, labor, winter feed) in response to market signals driven by the cattle cycle. This strategy automatically increases heifer retention when the opportunity cost is low and reduces the number retained when cost is high. The effect is a lower average cost of cows in the herd, lower overall investment, and a higher net return on investment. Iowa producers, who often have greater flexibility in land use than producers in other major beef cow regions, can better utilize this strategy that generates greater profits and net worth growth.
Resumo:
The bacterial flagellar motor is a remarkable nanomachine that provides motility through flagellar rotation. Prior structural studies have revealed the stunning complexity of the purified rotor and C-ring assemblies from flagellar motors. In this study, we used high-throughput cryo-electron tomography and image analysis of intact Borrelia burgdorferi to produce a three-dimensional (3-D) model of the in situ flagellar motor without imposing rotational symmetry. Structural details of B. burgdorferi, including a layer of outer surface proteins, were clearly visible in the resulting 3-D reconstructions. By averaging the 3-D images of approximately 1,280 flagellar motors, a approximately 3.5-nm-resolution model of the stator and rotor structures was obtained. flgI transposon mutants lacked a torus-shaped structure attached to the flagellar rod, establishing the structural location of the spirochetal P ring. Treatment of intact organisms with the nonionic detergent NP-40 resulted in dissolution of the outermost portion of the motor structure and the C ring, providing insight into the in situ arrangement of the stator and rotor structures. Structural elements associated with the stator followed the curvature of the cytoplasmic membrane. The rotor and the C ring also exhibited angular flexion, resulting in a slight narrowing of both structures in the direction perpendicular to the cell axis. These results indicate an inherent flexibility in the rotor-stator interaction. The FliG switching and energizing component likely provides much of the flexibility needed to maintain the interaction between the curved stator and the relatively symmetrical rotor/C-ring assembly during flagellar rotation.
Resumo:
We investigate a class of optimal control problems that exhibit constant exogenously given delays in the control in the equation of motion of the differential states. Therefore, we formulate an exemplary optimal control problem with one stock and one control variable and review some analytic properties of an optimal solution. However, analytical considerations are quite limited in case of delayed optimal control problems. In order to overcome these limits, we reformulate the problem and apply direct numerical methods to calculate approximate solutions that give a better understanding of this class of optimization problems. In particular, we present two possibilities to reformulate the delayed optimal control problem into an instantaneous optimal control problem and show how these can be solved numerically with a stateof- the-art direct method by applying Bock’s direct multiple shooting algorithm. We further demonstrate the strength of our approach by two economic examples.
Resumo:
This paper presents the first analysis of the input impedance and radiation properties of a dipole antenna, placed on top of Fan 's three-dimensional electromagnetic bandgap (EBG) structure, (Applied Physics Letters, 1994) constructed using a high dielectric constant ceramic. The best position of the dipole on the EBG surface is determined following impedance and radiation pattern analyses. Based on this optimum configuration an integrated Schottky heterodyne detector was designed, manufactured and tested from 0.48 to 0.52 THz. The main antenna features were not degraded by the high dielectric constant substrate due to the use of the EBG approach. Measured radiation patterns are in good agreement with the predicted ones.
Resumo:
Dexmedetomidine and lignocaine IV are used clinically to provide analgesia in horses. The aims of this study were to investigate the antinociceptive effects, plasma concentrations and sedative effects of 2, 4 and 6 µg/kg/h dexmedetomidine IV, with a bolus of 0.96 µg/kg preceding each continuous rate infusion (CRI), and 20, 40 and 60 µg/kg/min lignocaine IV, with a bolus of 550 µg/kg preceding each CRI, in 10 Swiss Warmblood horses. Electrically elicited nociceptive withdrawal reflexes were evaluated by deltoid muscle electromyography. Nociceptive threshold and tolerance were determined by electromyography and behaviour following single and repeated stimulation. Plasma concentrations of drugs were determined by liquid chromatography and mass spectrometry. Sedation was scored on a visual analogue scale. Dexmedetomidine increased nociceptive threshold to single and repeated stimulation for all CRIs, except at 2 µg/kg/h, where no increase in single stimulation nociceptive threshold was observed. Dexmedetomidine increased nociceptive tolerance to single and repeated stimulation at all CRIs. There was large individual variability in dexmedetomidine plasma concentrations and levels of sedation; the median plasma concentration providing antinociceptive effects to all recorded parameters was 0.15 ng/mL, with a range from <0.02 ng/mL (below the lower limit of quantification) to 0.25 ng/mL. Lignocaine increased nociceptive threshold and tolerance to single and repeated stimulation at CRIs of 40 and 60 µg/kg/min, corresponding to plasma lignocaine concentrations >600 ng/mL. Only nociceptive tolerance to repeated stimulation increased at 20 µg/kg/min lignocaine. Lignocaine at 40 µg/kg/min and dexmedetomidine at 4 µg/kg/h were the lowest CRIs resulting in consistent antinociception. Lignocaine did not induce significant sedation.
Resumo:
Dexmedetomidine, the most selective α2 -adrenoceptor agonist in clinical use, is increasingly being used in both conscious and anaesthetized horses; however, the pharmacokinetics and sedative effects of this drug administered alone as an infusion are not previously described in horses. Seven horses received an infusion of 8 μg dexmedetomidine/kg/h for 150 min, venous blood samples were collected, and dexmedetomidine concentrations were assayed using liquid chromatography-mass spectrometry (LC/MS) and analyzed using noncompartmental pharmacokinetic analysis. Sedation was scored as the distance from the lower lip of the horse to the ground measured in centimetre. The harmonic mean (SD) plasma elimination half-life (Lambda z half-life) for dexmedetomidine was 20.9 (5.1) min, clearance (Cl) was 0.3 (0.20) L/min/kg, and volume of distribution at steady-state (Vdss ) was 13.7 (7.9) L/kg. There was a considerable individual variation in the concentration of dexmedetomidine vs. time profile. The level of sedation covaried with the plasma concentration of dexmedetomidine. This implies that for clinical use of dexmedetomidine constant rate infusion in conscious horses, infusion rates can be easily adjusted to effect, and this is preferable to an infusion at a predetermined value.
Resumo:
Francis Brown with the co-op. of ...
Resumo:
The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B 0 = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B 0 value, RR-RCS measurements in a room temperature gas cell give the rotational constants B v of the five lowest-lying thermally populated vibrationally excited states ν7/8, ν9, ν11/12, ν13, and ν14/15. Their B v constants differ from B 0 by between −1.02 MHz and +2.23 MHz. Combining the B 0 with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys.111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths r e(C-C) = 1.3866(3) Å and r e(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ r e bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths r g(C-C)=1.3907(3) Å and r g(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction r g bond lengths measured in the 1960s.