952 resultados para conservation biology


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA is the chemotherapeutic target for treating diseases of genetic origin. Besides well-known double-helical structures (A, B, Z, parallel stranded-DNA etc.), DNA is capable of forming several multi-stranded structures (triplex, tetraplex, i-motif etc.) which have unique biological significance. The G-rich 3'-ends of chromosomes, called telomeres, are synthesized by telomerase, a ribonucleoprotein, and over-expression of telomerase is associated with cancer. The activity of telomerase is suppressed if the G-rich region is folded into the four stranded structures, called G-quadruplexes (G4-DNAs) using small synthetic ligands. Thus design and synthesis of new G4-DNA ligands is an attractive strategy to combat cancer. G4-DNA forming sequences are also prevalent in other genomic regions of biological significance including promoter regions of several oncogenes. Effective gene regulation may be achieved by inducing a G4-DNA structure within the G-rich promoter sequences. To date, several G4-DNA stabilizing ligands are known. DNA groove binders interact with the duplex B-DNA through the grooves (major and minor groove) in a sequence-specific manner. Some of the groove binders are known to stabilize the G4-DNA. However, this is a relatively under explored field of research. In this review, we focus on the recent advances in the understanding of the G4-DNA structures, particularly made from the human telomeric DNA stretches. We summarize the results of various investigations of the interaction of various organic ligands with the G4-DNA while highlighting the importance of groove binder-G4-DNA interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many well-known examples of proteins with low sequence similarity, adopting the same structural fold. This aspect of sequence-structure relationship has been extensively studied both experimentally and theoretically, however with limited success. Most of the studies consider remote homology or ``sequence conservation'' as the basis for their understanding. Recently ``interaction energy'' based network formalism (Protein Energy Networks (PENs)) was developed to understand the determinants of protein structures. In this paper we have used these PENs to investigate the common non-covalent interactions and their collective features which stabilize the TIM barrel fold. We have also developed a method of aligning PENs in order to understand the spatial conservation of interactions in the fold. We have identified key common interactions responsible for the conservation of the TIM fold, despite high sequence dissimilarity. For instance, the central beta barrel of the TIM fold is stabilized by long-range high energy electrostatic interactions and low-energy contiguous vdW interactions in certain families. The other interfaces like the helix-sheet or the helix-helix seem to be devoid of any high energy conserved interactions. Conserved interactions in the loop regions around the catalytic site of the TIM fold have also been identified, pointing out their significance in both structural and functional evolution. Based on these investigations, we have developed a novel network based phylogenetic analysis for remote homologues, which can perform better than sequence based phylogeny. Such an analysis is more meaningful from both structural and functional evolutionary perspective. We believe that the information obtained through the ``interaction conservation'' viewpoint and the subsequently developed method of structure network alignment, can shed new light in the fields of fold organization and de novo computational protein design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of FIC (Filamentation induced by cAMP)(2) domain containing proteins in the regulation of many vital pathways, mostly through the transfer of NMPs from NTPs to specific target proteins (NMPylation), in microorganisms, higher eukaryotes, and plants is emerging. The identity and function of FIC domain containing protein of the human pathogen, Mycobacterium tuberculosis, remains unknown. In this regard, M. tuberculosis fic gene (Mtfic) was cloned, overexpressed, and purified to homogeneity for its biochemical characterisation. It has the characteristic FIC motif, HPFREGNGRSTR (HPFxxGNGRxxR), spanning 144th to 155th residue. Neither the His-tagged nor the GST-tagged MtFic protein, overexpressed in Escherichia coil, nor expression of Mtfic in Mycobacterium smegmatis, yielded the protein in the soluble fraction. However, the maltose binding protein (MBP) tagged MtFic (MBP-MtFic) could be obtained partly in the soluble fraction. The cloned, overexpressed, and purified recombinant MBP-MtFic showed conversion of ATP, GTP, CTP, and UTP into AMP. GMP, CMP, and UMP, respectively. Sequence alignment with several FIC motif containing proteins, complemented with homology modeling on the FIC motif containing protein, VbhT of Bartonella schoenbuchensis as the template, showed conservation and interaction of residues constituting the FIC domain. Site-specific mutagenesis of the His144, or Glu148, or Asn150 of the FIC motif, or of Arg87 residue that constitutes the FIC domain, or complete deletion of the FIC motif, abolished the NTP to NMP conversion activity. The design of NMP formation assay using the recombinant, soluble MtFic would enable identification of its target substrate for NMPylation. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computational tool called ``Directional Diffusion Regulator (DDR)'' is proposed to bring forth real multidimensional physics into the upwind discretization in some numerical schemes of hyperbolic conservation laws. The direction based regulator when used with dimension splitting solvers, is set to moderate the excess multidimensional diffusion and hence cause genuine multidimensional upwinding like effect. The basic idea of this regulator driven method is to retain a full upwind scheme across local discontinuities, with the upwind bias decreasing smoothly to a minimum in the farthest direction. The discontinuous solutions are quantified as gradients and the regulator parameter across a typical finite volume interface or a finite difference interpolation point is formulated based on fractional local maximum gradient in any of the weak solution flow variables (say density, pressure, temperature, Mach number or even wave velocity etc.). DDR is applied to both the non-convective as well as whole unsplit dissipative flux terms of some numerical schemes, mainly of Local Lax-Friedrichs, to solve some benchmark problems describing inviscid compressible flow, shallow water dynamics and magneto-hydrodynamics. The first order solutions consistently improved depending on the extent of grid non-alignment to discontinuities, with the major influence due to regulation of non-convective diffusion. The application is also experimented on schemes such as Roe, Jameson-Schmidt-Turkel and some second order accurate methods. The consistent improvement in accuracy either at moderate or marked levels, for a variety of problems and with increasing grid size, reasonably indicate a scope for DDR as a regular tool to impart genuine multidimensional upwinding effect in a simpler framework. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motion of DNA (in the bulk solution) and the non-Newtonian effective fluid behavior are considered separately and self-consistently with the fluid motion satisfying the no-slip boundary condition on the surface of the confining geometry in the presence of channel pressure gradients. A different approach has been developed to model DNA in the micro-channel. In this study the DNA is assumed as an elastic chain with its characteristic Young's modulus, Poisson's ratio and density. The force which results from the fluid dynamic pressure, viscous forces and electromotive forces is applied to the elastic chain in a coupled manner. The velocity fields in the micro-channel are influenced by the transport properties. Simulations are carried out for the DNAs attached to the micro-fluidic wall. Numerical solutions based on a coupled multiphysics finite element scheme are presented. The modeling scheme is derived based on mass conservation including biomolecular mass, momentum balance including stress due to Coulomb force field and DNA-fluid interaction, and charge transport associated to DNA and other ionic complexes in the fluid. Variation in the velocity field for the non-Newtonian flow and the deformation of the DNA strand which results from the fluid-structure interaction are first studied considering a single DNA strand. Motion of the effective center of mass is analyzed considering various straight and coil geometries. Effects of DNA statistical parameters (geometry and spatial distribution of DNAs along the channel) on the effective flow behavior are analyzed. In particular, the dynamics of different DNA physical properties such as radius of gyration, end-to-end length etc. which are obtained from various different models (Kratky-Porod, Gaussian bead-spring etc.) are correlated to the nature of interaction and physical properties under the same background fluid environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To achieve food security and meet the demands of the ever-growing human populations, farming systems have assumed unsustainable practices to produce more from a finite land area. This has been cause for concern mainly due to the often-irreversible damage done to the otherwise productive agricultural landscapes. Agro-ecology is proclaimed to be deteriorating due to eroding integrity of connected ecological mosaics and vulnerability to climate change. This has contributed to declining species diversity, loss of buffer vegetation, fragmentation of habitats, and loss of natural pollinators or predators, which eventually leads to decline in ecosystem services. Currently, a hierarchy of conservation initiatives is being considered to restore ecological integrity of agricultural landscapes. However, the challenge of identifying a suitable conservation strategy is a daunting task in view of socio-ecological factors that may constrain the choice of available strategies. One way to mitigate this situation and integrate biodiversity with agricultural landscapes is to implement offset mechanisms, which are compensatory and balancing approaches to restore the ecological health and function of an ecosystem. This needs to be tailored to the history of location specific agricultural practices, and the social, ecological and environmental conditions. The offset mechanisms can complement other initiatives through which farmers are insured against landscape-level risks such as droughts, fire and floods. For countries in the developing world with significant biodiversity and extensive agriculture, we should promote a comprehensive model of sustainable agricultural landscapes and ecosystem services, replicable at landscape to regional scales. Arguably, the model can be a potential option to sustain the integrity of biodiversity mosaic in agricultural landscapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial information at the landscape scale is extremely important for conservation planning, especially in the case of long-ranging vertebrates. The biodiversity-rich Anamalai hill ranges in the Western Ghats of southern India hold a viable population for the long-term conservation of the Asian elephant. Through rapid but extensive field surveys we mapped elephant habitat, corridors, vegetation and land-use patterns, estimated the elephant population density and structure, and assessed elephant-human conflict across this landscape. GIS and remote sensing analyses indicate that elephants are distributed among three blocks over a total area of about 4600 km(2). Approximately 92% remains contiguous because of four corridors; however, under 4000 km2 of this area may be effectively used by elephants. Nine landscape elements were identified, including five natural vegetation types, of which tropical moist deciduous forest is dominant. Population density assessed through the dung count method using line transects covering 275 km of walk across the effective elephant habitat of the landscape yielded a mean density of 1.1 (95% Cl = 0.99-1.2) elephant/km(2). Population structure from direct sighting of elephants showed that adult male elephants constitute just 2.9% and adult females 42.3% of the population with the rest being subadults (27.4%), juveniles (16%) and calves (11.4%). Sex ratios show an increasing skew toward females from juvenile (1:1.8) to sub-adult (1:2.4) and adult (1:14.7) indicating higher mortality of sub-adult and adult males that is most likely due to historical poaching for ivory. A rapid questionnaire survey and secondary data on elephant-human conflict from forest department records reveals that villages in and around the forest divisions on the eastern side of landscape experience higher levels of elephant-human conflict than those on the western side; this seems to relate to a greater degree of habitat fragmentation and percentage farmers cultivating annual crops in the east. We provide several recommendations that could help maintain population viability and reduce elephant-human conflict of the Anamalai elephant landscape. (C) 2013 Deutsche Gesellschaft far Saugetierkunde. Published by Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The set of indispensable genes that are required by an organism to grow and sustain life are termed as essential genes. There is a strong interest in identification of the set of essential genes, particularly in pathogens, not only for a better understanding of the pathogen biology, but also for identifying drug targets and the minimal gene set for the organism. Essentiality is inherently a systems property and requires consideration of the system as a whole for their identification. The available experimental approaches capture some aspects but each method comes with its own limitations. Moreover, they do not explain the basis for essentiality in most cases. A powerful prediction method to recognize this gene pool including rationalization of the known essential genes in a given organism would be very useful. Here we describe a multi-level multi-scale approach to identify the essential gene pool in a deadly pathogen, Mycobacterium tuberculosis. Results: The multi-level workflow analyses the bacterial cell by studying (a) genome-wide gene expression profiles to identify the set of genes which show consistent and significant levels of expression in multiple samples of the same condition, (b) indispensability for growth by using gene expression integrated flux balance analysis of a genome-scale metabolic model, (c) importance for maintaining the integrity and flow in a protein-protein interaction network and (d) evolutionary conservation in a set of genomes of the same ecological niche. In the gene pool identified, the functional basis for essentiality has been addressed by studying residue level conservation and the sub-structure at the ligand binding pockets, from which essential amino acid residues in that pocket have also been identified. 283 genes were identified as essential genes with high-confidence. An agreement of about 73.5% is observed with that obtained from the experimental transposon mutagenesis technique. A large proportion of the identified genes belong to the class of intermediary metabolism and respiration. Conclusions: The multi-scale, multi-level approach described can be generally applied to other pathogens as well. The essential gene pool identified form a basis for designing experiments to probe their finer functional roles and also serve as a ready shortlist for identifying drug targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high concentration of the world's species in tropical forests endows these systems with particular importance for retaining global biodiversity, yet it also presents significant challenges for ecology and conservation science. The vast number of rare and yet to be discovered species restricts the applicability of species-level modelling for tropical forests, while the capacity of community classification approaches to identify priorities for conservation and management is also limited. Here we assessed the degree to which macroecological modelling can overcome shortfalls in our knowledge of biodiversity in tropical forests and help identify priority areas for their conservation and management. We used 527 plant community survey plots in the Australian Wet Tropics to generate models and predictions of species richness, compositional dissimilarity, and community composition for all the 4,313 vascular plant species recorded across the region (>1.3 million communities (grid cells)). We then applied these predictions to identify areas of tropical forest likely to contain the greatest concentration of species, rare species, endemic species and primitive angiosperm families. Synthesising these alternative attributes of diversity into a single index of conservation value, we identified two areas within the Australian wet tropics that should be a high priority for future conservation actions: the Atherton Tablelands and Daintree rainforest. Our findings demonstrate the value of macroecological modelling in identifying priority areas for conservation and management actions within highly diverse systems, such as tropical forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Periodic estimation, monitoring and reporting on area under forest and plantation types and afforestation rates are critical to forest and biodiversity conservation, sustainable forest management and for meeting international commitments. This article is aimed at assessing the adequacy of the current monitoring and reporting approach adopted in India in the context of new challenges of conservation and reporting to international conventions and agencies. The analysis shows that the current mode of monitoring and reporting of forest area is inadequate to meet the national and international requirements. India could be potentially over-reporting the area under forests by including many non-forest tree categories such as commercial plantations of coconut, cashew, coffee and rubber, and fruit orchards. India may also be under-reporting deforestation by reporting only gross forest area at the state and national levels. There is a need for monitoring and reporting of forest cover, deforestation and afforestation rates according to categories such as (i) natural/primary forest, (ii) secondary/degraded forests, (iii) forest plantations, (iv) commercial plantations, (v) fruit orchards and (vi) scattered trees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G.N. Ramachandran is among the founding fathers of structural molecular biology. He made pioneering contributions in computational biology, modelling and what we now call bioinformatics. The triple helical coiled coil structure of collagen proposed by him forms the basis of much of collagen research at the molecular level. The Ramachandran map remains the simplest descriptor and tool for validation of protein structures. He has left his imprint on almost all aspects of biomolecular conformation. His contributions in the area of theoretical crystallography have been outstanding. His legacy has provided inspiration for the further development of structural biology in India. After a pause, computational biology and bioinformatics are in a resurgent phase. One of the two schools established by Ramachandran pioneered the development of macromolecular crystallography, which has now grown into an important component of modern biological research in India. Macromolecular NMR studies in the country are presently gathering momentum. Structural biology in India is now poised to again approach heights of the kind that Ramachandran conquered more than a generation ago.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost-competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case-by-case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land-use decisions are made and how new social, political and economic forces in the future will influence this process.