998 resultados para college plan
Resumo:
Proyecto de migración e implantación de software libre en el Ayuntamiento de Palencia.
Resumo:
Taking the Royal College of Barcelona (1760 -1843) as a case study this paper shows the development of modern surgery in Spain initiated by Bourbon Monarchy founding new kinds of institutions through their academic activities of spreading scientific knowledge. Antoni Gimbernat was the most famousinternationally recognised Spanish surgeon. He was trained as a surgeon at the Royal College of Surgery in Cadiz and was later appointed as professor of theAnatomy in the College of Barcelona. He then became Royal Surgeon of King Carlos IV and with that esteemed position in Madrid he worked resiliently to improve the quality of the Royal colleges in Spain. Learning human bodystructure by performing hands-on dissections in the anatomical theatre has become a fundamental element of modern medical education. Gimbernat favoured the study of natural sciences, the new chemistry of Lavoisier and experimental physics in the academic programs of surgery. According to the study of a very relevant set of documents preserved in the library, the so-called “juntas literarias”, among the main subjects debated in the clinical sessions was the concept of human beings and diseases in relation to the development of the new experimental sciences. These documents showed that chemistry andexperimental physics were considered crucial tools to understand the unexplained processes that occurred in the diseased and healthy human bodyand in a medico-surgical context. It is important to stress that through these manuscripts we can examine the role and the reception of the new sciences applied to healing arts.
Resumo:
State University Audit Report - Special Investigation
Resumo:
State University Audit Report - Special Investigation
Resumo:
This plan is intended to implement Governor Vilsack’s Executive Order Number 9, V, signed September 14, 1999. This plan provides the Division of Workers’ Compensation anticipated regulatory actions for potential rule making activity for State Fiscal Year 2005, which began July 1, 2004, and thereafter.
Resumo:
State Audit Reports
Resumo:
Stragtegic plan for Iowa State University
Resumo:
Stragtegic plan for Iowa State University
Resumo:
Stragtegic plan for Iowa State University
Resumo:
Stragtegic plan for Iowa State University
Resumo:
Purpose: The objective of this study is to investigate the feasibility of detecting and quantifying 3D cerebrovascular wall motion from a single 3D rotational x-ray angiography (3DRA) acquisition within a clinically acceptable time and computing from the estimated motion field for the further biomechanical modeling of the cerebrovascular wall. Methods: The whole motion cycle of the cerebral vasculature is modeled using a 4D B-spline transformation, which is estimated from a 4D to 2D + t image registration framework. The registration is performed by optimizing a single similarity metric between the entire 2D + t measured projection sequence and the corresponding forward projections of the deformed volume at their exact time instants. The joint use of two acceleration strategies, together with their implementation on graphics processing units, is also proposed so as to reach computation times close to clinical requirements. For further characterizing vessel wall properties, an approximation of the wall thickness changes is obtained through a strain calculation. Results: Evaluation on in silico and in vitro pulsating phantom aneurysms demonstrated an accurate estimation of wall motion curves. In general, the error was below 10% of the maximum pulsation, even in the situation when substantial inhomogeneous intensity pattern was present. Experiments on in vivo data provided realistic aneurysm and vessel wall motion estimates, whereas in regions where motion was neither visible nor anatomically possible, no motion was detected. The use of the acceleration strategies enabled completing the estimation process for one entire cycle in 5-10 min without degrading the overall performance. The strain map extracted from our motion estimation provided a realistic deformation measure of the vessel wall. Conclusions: The authors' technique has demonstrated that it can provide accurate and robust 4D estimates of cerebrovascular wall motion within a clinically acceptable time, although it has to be applied to a larger patient population prior to possible wide application to routine endovascular procedures. In particular, for the first time, this feasibility study has shown that in vivo cerebrovascular motion can be obtained intraprocedurally from a 3DRA acquisition. Results have also shown the potential of performing strain analysis using this imaging modality, thus making possible for the future modeling of biomechanical properties of the vascular wall.