885 resultados para classification system
Resumo:
In this paper, we show a local-in-time existence result for the 3D micropolar fluid system in the framework of Besov-Morrey spaces. The initial data class is larger than the previous ones and contains strongly singular functions and measures. © 2013 Springer Basel.
Resumo:
Breast cancer is the most common cancer among women. In CAD systems, several studies have investigated the use of wavelet transform as a multiresolution analysis tool for texture analysis and could be interpreted as inputs to a classifier. In classification, polynomial classifier has been used due to the advantages of providing only one model for optimal separation of classes and to consider this as the solution of the problem. In this paper, a system is proposed for texture analysis and classification of lesions in mammographic images. Multiresolution analysis features were extracted from the region of interest of a given image. These features were computed based on three different wavelet functions, Daubechies 8, Symlet 8 and bi-orthogonal 3.7. For classification, we used the polynomial classification algorithm to define the mammogram images as normal or abnormal. We also made a comparison with other artificial intelligence algorithms (Decision Tree, SVM, K-NN). A Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of the proposed system. Our system is evaluated using 360 digitized mammograms from DDSM database and the result shows that the algorithm has an area under the ROC curve Az of 0.98 ± 0.03. The performance of the polynomial classifier has proved to be better in comparison to other classification algorithms. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
An important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e.; cardiac rhythm abnormalities). Aiming to made a fast and accurate cardiac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graph-based pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowledge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of the OPF classifier to the ones of other three well-known expert system classifiers, i.e.; support vector machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier presents a robust performance, i.e.; there is no need for parameter setup, as well as a high accuracy at an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater performance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In Computer-Aided Diagnosis-based schemes in mammography analysis each module is interconnected, which directly affects the system operation as a whole. The identification of mammograms with and without masses is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest for further image segmentation. This study aims to evaluate the performance of three techniques in classifying regions of interest as containing masses or without masses (without clinical findings), as well as the main contribution of this work is to introduce the Optimum-Path Forest (OPF) classifier in this context, which has never been done so far. Thus, we have compared OPF against with two sorts of neural networks in a private dataset composed by 120 images: Radial Basis Function and Multilayer Perceptron (MLP). Texture features have been used for such purpose, and the experiments have demonstrated that MLP networks have been slightly better than OPF, but the former is much faster, which can be a suitable tool for real-time recognition systems.
Resumo:
Non-Hodgkin lymphomas are of many distinct types, and different classification systems make it difficult to diagnose them correctly. Many of these systems classify lymphomas only based on what they look like under a microscope. In 2008 the World Health Organisation (WHO) introduced the most recent system, which also considers the chromosome features of the lymphoma cells and the presence of certain proteins on their surface. The WHO system is the one that we apply in this work. Herewith we present an automatic method to classify histological images of three types of non-Hodgkin lymphoma. Our method is based on the Stationary Wavelet Transform (SWT), and it consists of three steps: 1) extracting sub-bands from the histological image through SWT, 2) applying Analysis of Variance (ANOVA) to clean noise and select the most relevant information, 3) classifying it by the Support Vector Machine (SVM) algorithm. The kernel types Linear, RBF and Polynomial were evaluated with our method applied to 210 images of lymphoma from the National Institute on Aging. We concluded that the following combination led to the most relevant results: detail sub-band, ANOVA and SVM with Linear and RBF kernels.
Resumo:
Evidences suggest a role of renin-angiotensin system (RAS) in the development of chronic allograft injury. We correlated intrarenal angiotensin-converting enzyme, angiotensin II (Angio II) and transforming growth factor β1 (TGFβ1) expression in 58 biopsies-proven chronic allograft nephropathy (CAN) with tissue injury and allograft survival. The biopsies with CAN were graded according to Banff classification as I (22 cases), II (17) and III (19); 27 biopsies also showed a mononuclear inflammatory infiltrate in scarred areas. There were increased expression of angiotensin converting-enzyme (ACE), Angio II and TGFβ1 mainly in tubulointerstitial compartment in the group with CAN; there was no association of Angio II and TGFβ1 expression with interstitial fibrosis. There were no significant differences of ACE, Angio II and TGFβ1 expression between the patients treated and untreated with RAS blockade, and with the graft outcome. Interstitial inflammatory infiltrate had positive correlation with interstitial fibrosis and significant impact on graft survival at 8 years. Our study showed in a group of cases with CAN a high percentage of inflammatory infiltrate that correlated with interstitial fibrosis and graft outcome. The chronic inflammatory changes in these cases did not show significant association with local RAS expression.
Resumo:
OBJECTIVE: Differentiation between benign and malignant ovarian neoplasms is essential for creating a system for patient referrals. Therefore, the contributions of the tumor markers CA125 and human epididymis protein 4 (HE4) as well as the risk ovarian malignancy algorithm (ROMA) and risk malignancy index (RMI) values were considered individually and in combination to evaluate their utility for establishing this type of patient referral system. METHODS: Patients who had been diagnosed with ovarian masses through imaging analyses (n = 128) were assessed for their expression of the tumor markers CA125 and HE4. The ROMA and RMI values were also determined. The sensitivity and specificity of each parameter were calculated using receiver operating characteristic curves according to the area under the curve (AUC) for each method. RESULTS: The sensitivities associated with the ability of CA125, HE4, ROMA, or RMI to distinguish between malignant versus benign ovarian masses were 70.4%, 79.6%, 74.1%, and 63%, respectively. Among carcinomas, the sensitivities of CA125, HE4, ROMA (pre-and post-menopausal), and RMI were 93.5%, 87.1%, 80%, 95.2%, and 87.1%, respectively. The most accurate numerical values were obtained with RMI, although the four parameters were shown to be statistically equivalent. CONCLUSION: There were no differences in accuracy between CA125, HE4, ROMA, and RMI for differentiating between types of ovarian masses. RMI had the lowest sensitivity but was the most numerically accurate method. HE4 demonstrated the best overall sensitivity for the evaluation of malignant ovarian tumors and the differential diagnosis of endometriosis. All of the parameters demonstrated increased sensitivity when tumors with low malignancy potential were considered low-risk, which may be used as an acceptable assessment method for referring patients to reference centers.
Resumo:
The CIPESC (R) is a tool that informs the work of nurses in Public Health and assists in prioritizing their care in practice, management and research. It is also a powerful pedagogical instrument for the qualification of nurses within the Brazilian healthcare system. In the teaching of infectious diseases, using the CIPESC (R) assists in analyzing the interventions by encouraging clinical and epidemiological thinking regarding the health-illness process. With the purpose in mind of developing resources for teaching undergraduate nursing students and encouraging reflection regarding the process of nursing work, this article presents an experimental application of CIPESC (R), using meningococcal meningitis as an example.
Resumo:
Background: Tuberculosis (TB) remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Methods: Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART) model was generated and validated. The area under the ROC curve (AUC), sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. Results: We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear) and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. Conclusions: The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with clinical suspicion of TB in tertiary health facilities in countries with limited resources.
Resumo:
The objectives of this study were to assess the interrater reproducibility of the instrument to classify pediatric patients with cancer; verify the adequacy of the patient classification instrument for pediatric patients with cancer; and make a proposal for changing the instrument, thus allowing for the necessary adjustments for pediatric oncology patients. A total of 34 pediatric inpatients of a Cancer Hospital were evaluated by the teams of physicians, nurses and nursing technicians. The Kappa coefficient was used to rate the agreement between the scores, which revealed a moderate to high value in the objective classifications, and a low value in the subjective. In conclusion, the instrument is reliable and reproducible, however, it is suggested that to classify pediatric oncology patients, some items should be complemented in order to reach an outcome that is more compatible with the reality of this specific population.
Resumo:
Surveillance Levels (SLs) are categories for medical patients (used in Brazil) that represent different types of medical recommendations. SLs are defined according to risk factors and the medical and developmental history of patients. Each SL is associated with specific educational and clinical measures. The objective of the present paper was to verify computer-aided, automatic assignment of SLs. The present paper proposes a computer-aided approach for automatic recommendation of SLs. The approach is based on the classification of information from patient electronic records. For this purpose, a software architecture composed of three layers was developed. The architecture is formed by a classification layer that includes a linguistic module and machine learning classification modules. The classification layer allows for the use of different classification methods, including the use of preprocessed, normalized language data drawn from the linguistic module. We report the verification and validation of the software architecture in a Brazilian pediatric healthcare institution. The results indicate that selection of attributes can have a great effect on the performance of the system. Nonetheless, our automatic recommendation of surveillance level can still benefit from improvements in processing procedures when the linguistic module is applied prior to classification. Results from our efforts can be applied to different types of medical systems. The results of systems supported by the framework presented in this paper may be used by healthcare and governmental institutions to improve healthcare services in terms of establishing preventive measures and alerting authorities about the possibility of an epidemic.
Resumo:
Among the soils in the Mato Grosso do Sul, stand out in the Pantanal biome, the Spodosols. Despite being recorded in considerable extensions, few studies aiming to characterize and classify these soils were performed. The purpose of this study was to characterize and classify soils in three areas of two physiographic types in the Taquari river basin: bay and flooded fields. Two trenches were opened in the bay area (P1 and P2) and two in the flooded field (P3 and P4). The third area (saline) with high sodium levels was sampled for further studies. In the soils in both areas the sand fraction was predominant and the texture from sand to sandy loam, with the main constituent quartz. In the bay area, the soil organic carbon in the surface layer (P1) was (OC) > 80 g kg(-1), being diagnosed as Histic epipedon. In the other profiles the surface horizons had low OC levels which, associated with other properties, classified them as Ochric epipedons. In the soils of the bay area (P1 and P2), the pH ranged from 5.0 to 7.5, associated with dominance of Ca2+ and Mg2+, with base saturation above 50 % in some horizons. In the flooded fields (P3 and P4) the soil pH ranged from 4.9 to 5.9, H+ contents were high in the surface horizons (0.8-10.5 cmol(c) kg(-1)), Ca2+ and Mg-2 contents ranged from 0.4 to 0.8 cmol(c) kg(-1) and base saturation was < 50 %. In the soils of the bay area (P1 and P2) iron was accumulated (extracted by dithionite - Fed) and OC in the spodic horizon; in the P3 and P4 soils only Fed was accumulated (in the subsurface layers). According to the criteria adopted by the Brazilian System of Soil Classification (SiBCS) at the subgroup level, the soils were classified as: P1: Organic Hydromorphic Ferrohumiluvic Spodosol. P2: Typical Orthic Ferrohumiluvic Spodosol. P3: Typical Hydromorphic Ferroluvic Spodosol. P4: Arenic Orthic Ferroluvic Spodosol.
Resumo:
Abstract Background The authors have developed a small portable device for the objective measurement of the transparency of corneas stored in preservative medium, for use by eye banks in evaluation prior to transplantation. Methods The optical system consists of a white light, lenses, and pinholes that collimate the white light beams and illuminate the cornea in its preservative medium, and an optical filter (400–700 nm) that selects the range of the wavelength of interest. A sensor detects the light that passes through the cornea, and the average corneal transparency is displayed. In order to obtain only the tissue transparency, an electronic circuit was built to detect a baseline input of the preservative medium prior to the measurement of corneal transparency. The operation of the system involves three steps: adjusting the "0 %" transmittance of the instrument, determining the "100 %" transmittance of the system, and finally measuring the transparency of the preserved cornea inside the storage medium. Results Fifty selected corneas were evaluated. Each cornea was submitted to three evaluation methods: subjective classification of transparency through a slit lamp, quantification of the transmittance of light using a corneal spectrophotometer previously developed, and measurement of transparency with the portable device. Conclusion By comparing the three methods and using the expertise of eye bank trained personnel, a table for quantifying corneal transparency with the new device has been developed. The correlation factor between the corneal spectrophotometer and the new device is 0,99813, leading to a system that is able to standardize transparency measurements of preserved corneas, which is currently done subjectively.