657 resultados para chelating adsorbent
Resumo:
ALVES, Ana paula Melo. Vermiculitas tratadas quimicamente na obtenção de sólidos microporosos como precursores para híbridos inorgânico-orgânicos com aplicações adsortivas. 2009. 124 f. Tese (Doutorado em Quimica) - Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, PB, 2009.
Resumo:
MELO, Dulce Maria de Araújo et al. Evaluation of the Zinox and Zeolite materials as adsorbents to remove H2S from natural gas. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, Estados Unidos, v. 272, p. 32-36, 2006.
Resumo:
Les matériaux mésoporeux à base de silice sont des plateformes polyvalentes qui offrent une réponse aux besoins de domaines variés comme l’environnement, la santé et les énergies. La fonctionnalisation avec des groupements organiques en fait des matériaux hybrides qu’il est aisé d’orienter vers une application spécifique. Ainsi, afin de fournir une alternative aux procédés industriels, dommageables pour l’environnement actuellement utilisés pour l’extraction et la purification des terres rares, à savoir l’extraction liquide-liquide (ELL) majoritairement, les silices mésoporeuses ont été sollicitées à titre d’adsorbant dans l’extraction sur phase solide. Cette dernière, en opposition à l’ELL, présente de nombreux avantages dont, la suppression des solvants organiques, le contrôle de la sélectivité envers et parmi le groupe des éléments de terres rares (ÉTR) à travers l’ancrage du ligand sur un support solide et la possibilité de réutiliser plusieurs fois l’adsorbant. Les ÉTR sont des métaux qui participent à la transition vers des technologies moins coûteuses en énergie, il est donc primordial de rendre leurs procédés d’extraction plus verts. Dans le cadre de ce travail, différents types de silices ordonnées mésoporeuses, MCM-41, SBA-15 et SBA-16, ont été synthétisées, fonctionnalisées avec un ligand approprié, et leurs comportements vis à vis de ces éléments, comparés. Ces matériaux ont de nombreux points communs mais certaines caractéristiques les différencient néanmoins : la taille et la géométrie des pores, la connexion entre les pores, l’épaisseur des parois, l’accessibilité aux pores ou encore la diffusion des liquides ou gaz dans la matrice. C’est pourquoi, le but de cette étude est d’élucider l’impact de ces diverses propriétés sur l’adsorption sélective des ÉTR en condition statique et dynamique.
Resumo:
In the last decades, cyclometalated Ir(III) complexes have drawn a large interest for their unique properties: they are excellent triplet state emitters, thus the emission is phosphorescent in nature; typically high quantum yields and good stability make them good candidates for luminescent materials. Moreover, through an opportune choice of the ligands, it is possible to tune the emission along the whole visible spectra. Thanks to these interesting features, Ir(III) complexes have found different applications in several areas of applied science, from OLEDs to bioimaging. In particular, regarding the second application, a remarkable red-shift in the emission is required, in order to minimize the problem of the tissue penetration and the possible damages for the organisms. With the aim of synthesizing a new family of NIR emitting Ir(III) complexes, we envisaged the possibility to use for the first time 2-(1H-tetrazol-1-yl)pyridine as bidentate ligand able to provide the required red-shift of the emission of the final complexes. Exploiting the versatility of the ligand, I prepared two different families of heteroleptic Ir(III) complexes. In detail, in the first case the 2-(1H-tetrazol-1-yl)pyridine was used as bis-chelating N^N ligand, leading to cationic complexes, while in the second case it was used as cyclometalating C^N ligand, giving neutral complexes. The structures of the prepared molecules have been characterised by NMR spectroscopy and mass spectrometry. Moreover, the neutral complexes’ emissive properties have been measured: emission spectra have been recorded in solution at both room temperature and 77K, as well as in PMMA matrix. DFT calculation has then been performed and the obtained results have been compared to experimental ones.
Resumo:
ALVES, Ana paula Melo. Vermiculitas tratadas quimicamente na obtenção de sólidos microporosos como precursores para híbridos inorgânico-orgânicos com aplicações adsortivas. 2009. 124 f. Tese (Doutorado em Quimica) - Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, PB, 2009.
Resumo:
MELO, Dulce Maria de Araújo et al. Evaluation of the Zinox and Zeolite materials as adsorbents to remove H2S from natural gas. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, Estados Unidos, v. 272, p. 32-36, 2006.
Resumo:
Carbon materials are found versatile and applicable in wide range of applications. During the recent years research of carbon materials has focussed on the search of environmentally friendly, sustainable, renewable and low-cost starting material sources as well as simple cost-efficient synthesis techniques. As an alternative synthesis technique in the production of carbon materials hydrothermal carbonization (HTC) has shown a great potential. Depending on the application HTC can be performed as such or as a pretreatment technique. This technique allows synthesis of carbon materials i.e. hydrochars in closed vessel in the presence of water and self-generated pressure at relatively low temperatures (180-250 ˚C). As in many applications well developed porosity and heteroatom distribution are in a key role. Therefore in this study different techniques e.g. varying feedstock, templating and post-treatment in order to introduce these properties to the hydrochars structure were performed. Simple monosaccharides i.e. fructose or glucose and more complex compounds such as cellulose and sludge were performed as starting materials. Addition of secondary precursor e.g. thiophenecarboxaldehyde and ovalbumin was successfully exploited in order to alter heteroatom content. It was shown that well-developed porosity (SBET 550 m2/g) can be achieved via one-pot approach (i.e. exploitation of salt mixture) without conventionally used post-carbonization step. Nitrogen-enriched hydrochars indicated significant Pb(II) and Cr(VI) removal efficiency of 240 mg/g and 68 mg/g respectively. Sulphur addition into carbon network was not found to have enhancing effect on the adsorption of methylene blue or change acidity of the carbon material. However, these hydrochars were found to remove 99.9 % methylene blue and adsorption efficiency of these hydrochars remained over 90 % even after regeneration. In addition to water treatment application N-rich high temperature treated carbon materials were proven applicable as electrocatalyst and electrocatalyst support. Hydrothermal carbonization was shown to be workable technique for the production of carbon materials with variable physico-chemical properties and therefore hydrochars could be applied in several different applications e.g. as alternative low-cost adsorbent for pollutant removal from water.
Resumo:
This study presents two novel methods for treating important environmental contaminants from two different wastewater streams. One process utilizes the kinetic advantages and reliability of ion exchanging clinoptilolite in combination with biological treatment to remove ammonium from municipal sewage. A second process, HAMBgR (Hybrid Adsorption Membrane Biological Reactor), combines both ion exchange resin and bacteria into a single reactor to treat perchlorate contaminated waters. Combining physicochemical adsorptive treatment with biological treatment can provide synergistic benefits to the overall removal processes. Ion exchange removal solves some of the common operational reliability limitations of biological treatment, like slow response to environmental changes and leaching. Biological activity can in turn help reduce the economic and environmental challenges of ion exchange processes, like regenerant cost and brine disposal. The second section of this study presents continuous flow column experiments, used to demonstrate the ability of clinoptilolite to remove wastewater ammonium, as well as the effectiveness of salt regeneration using highly concentrated sea salt solutions. The working capacity of clinoptilolite more than doubled over the first few loading cycles, while regeneration recovered more than 98% of ammonium. Using the regenerant brine for subsequent halotolerant algae growth allowed for its repeated use, which could lead to cost savings and production of valuable algal biomass. The algae were able to uptake all ammonium in solution, and the brine was able to be used again with no loss in regeneration efficiency. This process has significant advantages over conventional biological nitrification; shorter retention times, wider range of operational conditions, and higher quality effluent free of nitrate. Also, since the clinoptilolite is continually regenerated and the regenerant is rejuvenated by algae, overall input costs are expected to be low. The third section of this study introduces the HAMBgR process for the elimination of perchlorate and presents batch isotherm experiments and pilot reactor tests. Results showed that a variety of ion-exchange resins can be effectively and repeatedly regenerated biologically, and maintain an acceptable working capacity. The presence of an adsorbent in the HAMBgR process improved bioreactor performance during operational fluctuations by providing a physicochemical backup to the biological process. Pilot reactor tests showed that the HAMBgR process reduced effluent perchlorate spikes by up to 97% in comparison to a conventional membrane bio-reactor (MBR) that was subject to sudden changes in influent conditions. Also, the HAMBgR process stimulated biological activity and lead to higher biomass concentrations during increased contaminant loading conditions. Conventional MBR systems can be converted into HAMBgR’s at a low cost, easily justifiable by the realized benefits. The concepts employed in the HAMBgR process can be adapted to treat other target contaminants, not just perchlorate.
Resumo:
Os estudos de adsorção de corantes alimentícios de soluções aquosas geralmente estão voltados para a remoção de um corante específico, porém, as misturas binárias são mais realistas para simular efluentes industriais. A adsorção de corantes com quitosana é considerada uma tecnologia alternativa eco amigável, e quando a estrutura da quitosana é modificada quimicamente, resulta em um adsorvente mais adequado. A reticulação da quitosana com cianoguanidina apresenta vantagens, como melhoria na estabilidade em soluções ácidas e diminuição do custo do adsorvente. Nesta pesquisa, o objetivo do trabalho foi modificar a quitosana com cianoguanidina para remoção de corantes alimentícios em sistema aquoso binário. A fim de verificar o comportamento dos adsorventes na operação de adsorção, foram preparadas amostras de quitosana com diferentes graus de desacetilação (75%, 85% e 95%), e após, foram realizadas modificações destas amostras com cianoguanidina. Os adsorventes foram caracterizados e aplicados para a adsorção de azul indigotina e amarelo tatrazina em sistema aquoso binário e em sistema simples. O efeito do pH e do grau de desacetilação foram verificados para a remoção dos corantes por quitosana com e sem modificação em sistema simples e binário. Curvas de equilíbrio foram obtidas em diferentes temperaturas e o modelo estendido de Langmuir foi ajustado aos dados experimentais. O comportamento cinético foi avaliado através dos modelos pseudo-primeira ordem, pseudo-segunda ordem e Avrami. Os parâmetros termodinâmicos foram determinados e estudos de dessorção do adsorvente foram realizados. O pH mais adequado foi 3, e o melhor grau de desacetilação foi 95% para ambos os sistemas aquosos e adsorbatos. As capacidades de adsorção da quitosana sem e com modificação não apresentaram diferença significativa. O modelo de Langmuir estendido apresentou ajuste adequado às curvas de equilíbrio e as máximas capacidades de adsorção foram 595,3 e 680,0 mg g-1, obtidas à 25ºC, para o os corantes azul indigotina e amarelo tatrazina, respectivamente. O modelo de Avrami foi o que melhor se ajustou aos dados cinéticos de adsorção. A dessorção do adsorvente foi possível por dois ciclos, mantendo sua capacidade de adsorção em 209,7 mg g-1 no primeiro ciclo e 200,2 mg g-1 no segundo ciclo. A quitosana modificada com cianoguanidina apresentou-se como um adsorvente promissor para a remoção de corantes alimentícios em sistema binário.
Resumo:
O uso de corantes sintéticos na indústria de alimentos tem provocado transtornos à saúde humana e ao meio ambiente. A quitosana pode ser imobilizada em matrizes sólidas e aplicada na remoção de corantes em coluna de leito fixo. A análise da dinâmica de uma coluna de leito fixo é baseada na curva de ruptura, esta é dependente da geometria da coluna, das condições operacionais e dos dados de equilíbrio. Neste contexto, o objetivo deste trabalho foi estudar o recobrimento de esferas de vidro por quitosana e sua aplicação como adsorvente de corantes em coluna de leito fixo. No estudo do recobrimento avaliaram-se os efeitos da concentração de quitosana e dos métodos de cura. As esferas recobertas foram aplicadas em ensaios de adsorção estático e dinâmico. Inicialmente, avaliou-se o equilíbrio de adsorção através da construção de isotermas e ajuste de modelos, e após, avaliaram-se os efeitos do tipo de cura e do grau de desacetilação da quitosana. Em seguida, foram analisados os efeitos do tipo de corante e do pH, e o comportamento cinético da adsorção pela construção de curvas de ruptura e ajuste de modelos dinâmicos. A influência da altura do leito e da concentração inicial de corante sobre os parâmetros da adsorção em leito fixo foram analisados através da metodologia de superfície de resposta (MSR). Ao final, estudou-se a regeneração da coluna. Os resultados mostraram que os maiores percentuais de recobrimento foram obtidos pelos métodos físico e físico/químico, na concentração de quitosana de 0,5% (m/v). Nestas condições o percentual de recobrimento foi de 46%. Nas imagens da superfície das esferas (MEV) observou-se que as mesmas foram recobertas de forma homogênea pela quitosana. As isotermas de equilíbrio obtidas foram classificadas como do tipo V, sendo o modelo de Sips o mais adequado para representar os dados experimentais. As capacidades máximas de adsorção foram 337 mg g-1, 286 mg g-1 e 200 mg g-1 para os corantes amarelo tartrazina, amarelo crepúsculo e vermelho 40, respectivamente. A aplicação das esferas recobertas com quitosana em leito fixo mostrou-se mais adequada utilizando o método de cura físico/químico e quitosana com grau de desacetilação de 85%. A máxima capacidade de adsorção da coluna em função do corante e do pH variou de 13 a 108 mg g–1. Os modelos BDST (bed–depth–service–time), Thomas e Yoon–Nelson foram adequados para representar os dados experimentais. De acordo com a MSR, o melhor desempenho do leito foi com altura de 30 cm e concentração inicial de corante de 50 mg L-1. Nestas condições, obteve-se tempo de ruptura de 88 min, máxima capacidade da coluna de 108 mg g-1 e remoção de 86 %. Na regeneração da coluna observou-se que cerca de 75% da capacidade máxima da coluna foi mantida após cinco ciclos de adsorção–eluição. Diante do exposto, a coluna de leito fixo empacotada com esferas recobertas com quitosana mostrou-se promissora na remoção de corantes de soluções aquosas.
Resumo:
Marine Recirculating Aquaculture Systems (RAS) produce great volume of wastewater, which may be reutilized/recirculated or reutilized after undergoing different treatment/remediation methods, or partly discharged into neighbour water-bodies (DWW). Phosphates, in particular, are usually accumulated at high concentrations in DWW, both because its monitoring is not compulsory for fish production since it is not a limiting parameter, and also because there is no specific treatment so far developed to remove them, especially in what concerns saltwater effluents. As such, this work addresses two main scientific questions. One of them regards the understanding of the actual (bio)remediation methods applied to effluents produced in marine RAS, by identifying their advantages, drawbacks and gaps concerning their exploitation in saltwater effluents. The second one is the development of a new, innovative and efficient method for the treatment of saltwater effluents that potentially fulfil the gaps identified in the conventional treatments. Thereby, the aims of this thesis are: (i) to revise the conventional treatments targeting major contaminants in marine RAS effluents, with a particular focus on the bioremediation approaches already conducted for phosphates; (ii) to characterize and evaluate the potential of oyster-shell waste collected in Ria de Aveiro as a bioremediation agent of phosphates spiked into artificial saltwater, over different influencing factors (e.g., oyster-shell pre-treatment through calcination, particle size, adsorbent concentration). Despite the use of oyster-shells for phosphorous (P) removal has already been applied in freshwater, its biosorptive potential for P in saltwater was never evaluated, as far as I am aware. The results herein generated showed that NOS is mainly composed by carbonates, which are almost completely converted into lime (CaO) after calcination (COS). Such pre-treatment allowed obtaining a more reactive material for P removal, since higher removal percentages and adsorption capacity was observed for COS. Smaller particle size fractions for both NOS and COS samples also increased P removal. Kinetic models showed that NOS adsorption followed, simultaneously, Elovich and Intraparticle Difusion kinetic models, suggesting that P removal is both a diffusional and chemically rate-controlled process. The percentage of P removal by COS was not controlled by Intraparticle Diffusion and the Elovich model was the kinetic model that best fitted phosphate removal. This work demonstrated that waste oyster-shells, either NOS or COS, could be used as an effective biosorbent for P removal from seawater. Thereby, this biomaterial can sustain a cost-effective and eco-friendly bioremediation strategy with potential application in marine RAS.
Resumo:
Aluminum cans has wide uses and Brazil is among one of the world's largest country at recycling, to provide an option that adds value to raw materials, this paper uses aluminum cans as aluminum source for the production of alumina. Evaluating the use of acid digestions (hydrochloric acid, sulfuric acid and aqua regia) and basic (potassium hydroxide) to solubilize the aluminum after which will be complexed with 8-hydroxyquinoline at different pH's. By calcination, the complex produces an oxide with metal components with varying proportions depending on the digestion process. The thermal behavior of the complex varies with the morphology and metals present, occurring different events due to these characteristics.
Resumo:
This work reports the application of banana peel as a novel bioadsorbent for in vitro removal of five mycotoxins (aflatoxins (AFB1, AFB2, AFG1, AFG2) and ochratoxin A). The effect of operational parameters including initial pH, adsorbent dose, contact time and temperature were studied in batch adsorption experiments. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHpzc) analysis were used to characterise the adsorbent material. Aflatoxins’ adsorption equilibrium was achieved in 15 min, with highest adsorption at alkaline pH (6–8), while ochratoxin has not shown any significant adsorption due to surface charge repulsion. The experimental equilibrium data were tested by Langmuir, Freundlich and Hill isotherms. The Langmuir isotherm was found to be the best fitted model for aflatoxins, and the maximum monolayer coverage (Q0) was determined to be 8.4, 9.5, 0.4 and 1.1 ng mg−1 for AFB1, AFB2, AFG1 and AFG2 respectively. Thermodynamic parameters including changes in free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were determined for the four aflatoxins. Free energy change and enthalpy change demonstrated that the adsorption process was exothermic and spontaneous. Adsorption and desorption study at different pH further demonstrated that the sorption of toxins was strong enough to sustain pH changes that would be experienced in the gastrointestinal tract. This study suggests that biosorption of aflatoxins by dried banana peel may be an effective low-cost decontamination method for incorporation in animal feed diets. © 2016 Informa UK Limited, trading as Taylor & Francis Group.
Resumo:
Harnessing the power of nuclear reactions has brought huge benefits in terms of nuclear energy, medicine and defence as well as risks including the management of nuclear wastes. One of the main issues for radioactive waste management is liquid radioactive waste (LRW). Different methods have been applied to remediate LRW, thereunder ion exchange and adsorption. Comparative studies have demonstrated that Na2Ti2O3SiO4·2H2O titanosilicate sorption materials are the most promising in terms of Cs+ and Sr2+ retention from LRW. Therefore these TiSi materials became the object of this study. The recently developed in Ukraine sol-gel method of synthesizing these materials was chosen among the other reported approaches since it allows obtaining the TiSi materials in the form of particles with size ≥ 4mm. utilizing inexpensive and bulk stable inorganic precursors and yielded the materials with desirable properties by alteration of the comparatively mild synthesis conditions. The main aim of this study was to investigate the physico-chemical properties of sol-gel synthesized titanosilicates for radionuclide uptake from aqueous solutions. The effect of synthesis conditions on the structural and sorption parameters of TiSi xerogels was planned to determine in order to obtain a highly efficient sorption material. The ability of the obtained TiSis to retain Cs+, Sr2+ and other potentially toxic metal cations from the synthetic and real aqueous solutions was intended to assess. To our expectations, abovementioned studies will illustrate the efficiency and profitability of the chosen synthesis approach, synthesis conditions and the obtained materials. X-ray diffraction, low temperature adsorption/desorption surface area analysis, X-ray photoelectron spectroscopy, infrared spectroscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy was used for xerogels characterization. The sorption capability of the synthesized TiSi gels was studied as a function of pH, adsorbent mass, initial concentration of target ion, contact time, temperature, composition and concentration of the background solution. It was found that the applied sol-gel approach yielded materials with a poorly crystalline sodium titanosilicate structure under relatively mild synthesis conditions. The temperature of HTT has the strongest influence on the structure of the materials and consequently was concluded to be the control factor for the preparation of gels with the desired properties. The obtained materials proved to be effective and selective for both Sr2+ and Cs+ decontamination from synthetic and real aqueous solutions like drinking, ground, sea and mine waters, blood plasma and liquid radioactive wastes.
Resumo:
Sulfated polysaccharides (PS) are biomolecules with a great biotechnological potential. There are few data about PS from high plants. In addition, pharmacological activities of PS from plants have not been carrying out. The aim of this work was extract PS from the angiosperm Halodule wrightii and study their anticoagulant and antioxidant activities. Histological analysis showed the presence of the PS manly in the roots. A polysaccharide-rich extract was obtained from H. wrightii by proteolysis followed by methanol and TCA precipitation. Chemical, infra-red analysis and agarose gel electrophoresis in 1.3 diaminopropane acetate buffer confirmed the presence of sulfated polysaccharides made by glucose, galactose, xylose and sulfate residues in the proportion 1: 0,9: 1: 1. In addition polyacrilamide electrophoresis have shown that extract is mainly compose by 11kDa sulfated polysaccharides. Pharmacological analysis have shown total antioxidant capacity (CAT) that resulted in 15,21 μg for equivalent of ascorbic acid, scavenging activity of the DPPH radical with 41,36 % of scavenging, activity of reducing power with the maximum of 0,290 nm (50 % of vitamin C activity) and scavenging activity superoxide radical (O2-) with a maximum of 32,23 %. Chelating activity of metal less than 4% and scavenging activity of the radical hydroxyl (OH-) less than 2%. Time of activated partial tromboplastin (aPTT) doubling the time of coagulation from 20μg of and protrombin time (PT) was not present. The data indicate that PS from Halodule wrightii could be considered for future applications in medicine, food production or cosmetic industry