961 resultados para cerium vanadates
Resumo:
Nontronite, the main metalliferous phase of the Galapagos mounds, occurs at subsurface depths of about 2 to 20 meters; Mn-oxide material is limited to the upper 2 meters of the mounds. The nontronite forms intervals of up to a few meters' thickness, consisting essentially of 100% nontronite granules, which alternate with intervals of normal pelagic sediment. Electron microprobe analyses of nontronite granules from different core samples indicate that: (1) there is little difference in major element composition between nontronites from varying locations within the mounds, with adjacent granules from a given sample having very similar compositions; (2) individual granules show little internal variation in composition. This indicates that the granules are composed of a single mineral of essentially constant composition, consistent with relatively uniform conditions of Eh and composition during nontronite formation. Mn-oxide crusts have very low Fe contents, a feature characteristic of rapidly deposited Mn-oxide crusts formed under hydrothermal influences. The rare-earth element (REE) abundances of the nontronites are generally extremely low, totalling less than several ppm. Two samples have the negatively Ce anomaly typical of authigenic precipitates formed relatively rapidly from seawater. A Mn-oxide crust sample has low REE contents, typical of Mn-oxide crusts formed under hydrothermal influences, but no negative Ce anomaly. A sample of unusual Mn-Fe-oxide mud has relatively high REE concentrations and a seawater-type pattern; both of these features are also found for metalliferous sediments from the East Pacific Rise. The oxygen and hydrogen isotopic composition of the nontronites define a restricted field within a d18O-dD plot. In manganiferous sediments, d18O and dD appear to decrease with increase in the Mn-oxide content of the sediment. From the d18O values of the nontronites, formation temperatures in the range of about 20-30°C have been estimated. By comparison, temperatures of up to 11.5 °C at a 9-meter depth have been directly measured within the mounds (Corliss et al., 1979), and heat-flow data suggest present basement/sediment interface temperatures of 15-25°C. In a plot of Fe + Mn vs. d18O, the Mn-oxide crust and Mn-Fe-ooze plot near the tie-lines for authigenic Mn nodules and silicate phases, implying that they have formed in isotopic equilibrium with seawater at or close to bottom-water temperatures.
Resumo:
Eocene to Pleistocene volcanogenic sediments from the Mariana Trough and the Mariana arc-trench system have been studied by X-ray diffraction, X-ray fluorescence, and atomic absorption, and with a scanning electron microscope with an X-ray-energy-dispersive attachment. The mineralogical composition of the volcaniclastic sediments (tuffs) is the same as that of the other associated sediments (mudstones). Diagenetic alterations are significant and seem to result from two processes. The first (low-temperature alteration) develops with age and depth; it consists of the genesis of pure smectite, coupled with zeolites (phillipsite, clinoptilolite). The second is limited to sediments immediately overlying basalts and to the altered basalts themselves. It consists of the massive development of palygorskite, and seems to be linked with hydrothermal activity in the igneous basement.
Resumo:
New geological and geophysical data on the Amirante Arc, which locates to the south of the Seychelles Islands, are presented. These data were obtained by Pacific Oceanological Institute during the 33-rd cruise of R/V Professor Bogorov in 1990. The Amirante Arc represents a seamount chain, which has submeridional strike and total length about 400 km. To the west of the Amirante Arc there are a deep sea trench and a back-arc basin, i.e. this area is characterized by structural elements associated with the subduction zone of Western Pacific type. According to our data the Amirante Arc is composed by tholeiites of ocean plateau type. This facts are evidences that the Amirante Arc differs from typical Pacific island arcs. This gives an opportunity to distinguish a special type of oceanic structures, i.e. non-volcanic (amagmatic) ridges. The Amirante Ridge has been probably formed as a result of oceanic crust heaping due to horizontal displacements of its blocks in the process of spreding ridge formation in the Indian Ocean during Cretaceous-Paleogene.
Resumo:
The Astoria submarine fan, located off the coast of Washington and Oregon, has grown throughout the Pleistocene from continental input delivered by the Columbia River drainage system. Enormous floods from the sudden release of glacial lake water occurred periodically during the Pleistocene, carrying vast amounts of sediment to the Pacific Ocean. DSDP site 174, located on the southern distal edge of the Astoria Fan, is composed of 879 m of terrigenous sediments. The section is divided into two major units separated by a distinct seismic discontinuity: an upper, turbidite fan unit (Unit I), and an underlying finer-grained unit (Unit II). Both units have overlapping ranges of Nd and Hf isotope compositions, with the majority of samples having e-Nd values of -7.1 to -15.2 and eHf values -6.2 to -20.0; the most notable exception is the uppermost sample in the section, which is identical to modern Columbia River sediment. Nd depleted mantle model ages for the site range from 2.0 to 1.2 Ga and are consistent with derivation from cratonic Proterozoic source regions, rather than Cenozoic and Mesozoic terranes proximal to the Washington-Oregon coast. The Astoria Fan sediments have significantly less radiogenic Nd (and Hf) isotopic compositions than present day Columbia River sediment (e-Nd=-3 to -4; [Goldstein, S.J., Jacobsen, S.B., 1987. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth. Planet. Sci. Lett. 87, 249-265; doi:10.1016/0012-821X(88)90013-1]), and suggest that outburst flooding, tapping Proterozoic source regions, was the dominant sediment transport mechanism in the genesis and construction of the Astoria Fan. Pb isotopes form a highly linear 207Pb/204Pb - 206Pb/204Pb array, and indicate the sediments are a binary mixture of two disparate sources with isotopic compositions similar to Proterozoic Belt Supergroup metasediments and Columbia River Basalts. The combined major, trace and isotopic data argue that outburst flooding was responsible for depositing the majority (top 630 m) of the sediment in the Astoria Fan.
Resumo:
Deep Sea Drilling Project Legs 59 and 60 drilled 15 sites along an east-west transect at 18°N from the West Philippine Basin to the Mariana Trench (Fig. 1) in order to study the nature and genesis of the back-arc, marginal basins and the remnant and active arcs of the region. Leg 59 drilled at five sites at the western end of the traverse: Site 447 in the West Philippine Basin; Site 448 on the Palau-Kyushu Ridge; Sites 449 and 450 in the Parece Vela Basin; and Site 451 on the West Mariana Ridge. Penetration into basaltic basement of these sites was 183.5 meters at 447 (8 basalt flows); 623 meters at 448 (46 basalt flows, sills, and dikes and volcaniclastic units); 40.5 meters at 449 (2 basalt flows); 7 meters at 450 (1 basalt intrusion); and 4 meters of basalt breccia at 451 overlain by 861 meters of volcaniclastic sedimentary rocks.
Resumo:
Behavior of rare earth elements (REE) and Th is studied along the Transatlantic transect at 22°N. It is shown that both REE and Th contents relative to Al (the most lithogenic element) increase toward the pelagic region. The increasing trend becomes more complicated due to variations in content of biogenic calcium carbonate that acts as a diluting component in sediments. REE composition varies symmetrically relative to the Mid-Atlantic Ridge (MAR) emphasizing weak hydrothermal influence on sediments of the ridge axis, although the well-known criteria for hydrothermal contribution, such as Al/(Al+Mn+Fe) and (Fe+Mn)/Ti, do not reach critical values. Variations in REE content and composition allowed to distinguish the following five sediment zones in the transect: (I) terrigenous sediments of the Nares abyssal plain; (II) pelagic sediments of the North American Basin; (III) carbonate ooze of the MAR axis; (IV) pelagic sediments of the Canary Basin; and (V) terrigenous clay and calcareous mud of the African continental slope and slope base. Ferromanganese nodules of the hydrogenous type with extremely high Ce (up to 1801 ppm) and Th (up to 138 ppm) contents occur in pelagic sediments. It is ascertained that P, REE, and Th contents depend on Fe content in Atlantic sediments. Therefore, one can suggest that only minor amount of phosphorus is bound with bone debris. Low concentration of bone debris phosphorus is a result of relatively high sedimentation rates in the Atlantic Ocean, as compared with those in pelagic regions of the Pacific Ocean.
Resumo:
The book presents results of comprehensive geological and geophysical studies, carried out in the Cape Verde fault zone in the 3-rd cruise of R/V Akademik Nikolaj Strakhov (1986). Detailed characterization of bottom relief, thickness and structure of the sedimentary cover, magnetic field, crust structure, lithology and stratigraphy of sediments, petrography and geochemistry of magmatic rocks. Conclusions about tectonic layering of the crust and upper mantle in the fault zone, and about a concurrent structural section of large mantle inhomogeneities have been done. The book is the first monographic description of a major fault structure of the ocean floor.
Resumo:
This paper reports results of petrographic and geochemical studies of Miocene-Pleistocene volcanic rocks that accompanied formation of deep-water basins of the Sea of Japan and Sea of Okhotsk. Geochemical types of these rocks, their geodynamic settings, and their derivation from different magmatic sources were determined. Marginal-sea basaltoids from the Sea of Japan are derivatives of fluid-enriched mantle (EMI), while volcanics from the Kuril basin were generated from mantle enriched in continental crust matter (EMU). In spite of different conditions of their genesis, they have some common geochemical features, in particular, their calc-alkaline signatures. These traces of influence of the sialic crust on magma generation confirm development of the basins of both these seas on the continental basement.
Resumo:
Ferruginate shells and tubular worm burrows from the oxygenated zone of the Black Sea (Kalamit Bay and Danube River mouth) are studied by transmission and scanning electron microscopy combined with analyses of elemental composition. Iron and manganese oxyhydroxide nodules considered here are enriched in phosphorus. They contain variable amounts of terrigenous and biogenic material derived from host sediments. Oxyhydroxides are mainly characterized by colloform structure, whereas globular and crystalline structures are less common. The dominating iron phase is represented by ferroxyhite and protoferroxyhite, whereas the manganese phase is composed of Fe-free vernadite. Concentrations of Mn, As, and Mo are 12-18 times higher relative to sediments, while concentrations of Fe, P, Ni, and Co increase 5-7 times during nodule formation.
Resumo:
We report the major, rare earth, and other trace element compositions of clinopyroxenes from two Leg 140, Hole 504B diabase dikes. These pyroxenes reflect a complex history of crystal growth and magma evolution. The large ranges of composition found reflect incorporation of exotic phenocrysts into the melt, the early formation of crystal clots before dike intrusion during an undercooling event, and in-situ fractionation of melt during and following dike emplacement. Some of the pyroxenes occur in coarse two- and three-phase glomerocrysts, which may be ôprotogabbrosö representing early stages of melt crystallization in the lower crust. Large variations in trace element composition are found. These likely reflect heterogeneous nucleation and growth of plagioclase and pyroxene in the melt, as well as complex interface kinetics that may affect partition coefficients during rapid crystal growth expected during undercooling. This can explain the formation of irregular chemical sector zoning in some equant anhedral phenocrysts. Undercooling of magmas in the lower crust most likely reflects input of fresh hot melt into a stagnating melt-storage zone. Dikes intruded upward from an inflated melt-storage zone during such a cycle are likely to be larger than those intruded from the storage zone between such cycles, when it would be deflated, consistent with the greater overall thickness of the phyric dikes in the Leg 140 section of Hole 504B.
Resumo:
Major oxide and trace element determinations of the composition basalts from the bottom of Hole 487, together with microprobe analyses of their minerals (olivine, magnesiochromite, salite, and plagioclase), prove that they are depleted oceanic tholeiites.
Resumo:
An evaluation has been made of the method of establishing the REE contents and patterns and Nd isotopic compositions of sea water over Cenozoic time from their record in the FeMn-oxide coatings of foraminiferal calcite. Using 0-60 Ma samples from the Rio Grande Rise (DSDP Site 357) it has been established that the REE contents of the coatings are generally similar to those of Recent samples. However, in the Cenozoic samples the surface coatings have been diagenetically modified under suboxic conditions resulting in a distinctly different REE pattern although the original 143Nd/144Nd ratios appear to have been preserved. The Nd isotopic curve for Cenozoic sea water in the S. Atlantic shows clear temporal trends, although these are not so extreme as to show 143Nd/144Nd ratios outside the range observed in modem sea water. With the principal exception of the oldest samples there is an approximate inverse relationship between the Nd and Sr isotopic compositions of the foraminifera. It is suggested that the changes reflect both global changes in the relative proportions of Nd and Sr derived from continental input and from the weathering of volcanic debris together with short term and local variations to which the Sr curve is insensitive, reflecting the different response times of the two elements to changes in oceanic input functions. The Nd isotope curve appears to be a potentially useful tracer of ocean palaeochemistry.
Resumo:
The northwest trending walls of the Pito Deep Rift (PDR), a tectonic window in the southeast Pacific, expose in situ oceanic crust generated ?3 Ma at the superfast spreading southern East Pacific Rise (SEPR). Whole rock analyses were performed on over 200 samples of dikes and lavas recovered from two ~8 km**2 study areas. Most of the PDR samples are incompatible-element-depleted normal mid-ocean ridge basalts (NMORB; (La/Sm)N < 1.0) that show typical tholeiitic fractionation trends. Correlated variations in Pb isotope ratios, rare earth element patterns, and ratios of incompatible elements (e.g., (Ce/Yb)N) are best explained by mixing curves between two enriched and one depleted mantle sources. Pb isotope compositions of most PDR NMORB are offset from SEPR data toward higher values of 207Pb/204Pb, suggesting that an enriched component of the mantle was present in this region in the past ?3 Ma but is not evident today. Overall, the PDR crust is highly variable in composition over long and short spatial scales, demonstrating that chemically distinct lavas and dikes can be emplaced within the same segment over short timescales. However, the limited spatial distribution of high 206Pb/204Pb samples and the occurrence of relatively homogeneous MgO compositions (ranging <2.5 wt %) within a few of the individual dive transects (over distances of ~1 km) suggests that the mantle source composition evolved and magmatic temperatures persisted over timescales of tens of thousands of years. The high degree of chemical variability between pairs of adjacent dikes is interpreted as evidence for along-axis transport of magma from chemically distinct portions of the melt lens. Our findings suggest that lateral dike propagation occurs to a significant degree at superfast spreading centers.