957 resultados para cephalosporin C production
Resumo:
The purpose of this study was to simulate and to optimize integrated gasification for combine cycle (IGCC) for power generation and hydrogen (H2) production by using low grade Thar lignite coal and cotton stalk. Lignite coal is abundant of moisture and ash content, the idea of addition of cotton stalk is to increase the mass of combustible material per mass of feed use for the process, to reduce the consumption of coal and to increase the cotton stalk efficiently for IGCC process. Aspen plus software is used to simulate the process with different mass ratios of coal to cotton stalk and for optimization: process efficiencies, net power generation and H2 production etc. are considered while environmental hazard emissions are optimized to acceptance level. With the addition of cotton stalk in feed, process efficiencies started to decline along with the net power production. But for H2 production, it gave positive result at start but after 40% cotton stalk addition, H2 production also started to decline. It also affects negatively on environmental hazard emissions and mass of emissions/ net power production increases linearly with the addition of cotton stalk in feed mixture. In summation with the addition of cotton stalk, overall affects seemed to negative. But the effect is more negative after 40% cotton stalk addition so it is concluded that to get maximum process efficiencies and high production less amount of cotton stalk addition in feed is preferable and the maximum level of addition is estimated to 40%. Gasification temperature should keep lower around 1140 °C and prefer technique for studied feed in IGCC is fluidized bed (ash in dry form) rather than ash slagging gasifier
Resumo:
The experiment was performed in the experimental area of the Engineering Department Federal University of Lavras, Minas Gerais State, Brazil. It aimed at identifying the adequate irrigation management of the greenhouse-cultivated Japanese cucumber (Cucumis sativus L.). complete randomized design, with four levels of soil water potential (15; 30; 60 e 120 kPa) at two phenological phases (vegetative and reproductive), and 5 replications. Overall, the results showed decrease of yield according to increase of soil water potentials. During the reproductive stage, Japanese cucumber plants were more sensitive to water deficit, resulting in further decrease in yield compared to applied water deficit during the vegetative stage of the culture.
Resumo:
The high seedlings quality is essential for deployment of homogeneous orchards. This study evaluated the baruzeiro (Dipteryx alata Vog) seedlings formation on different substrates within protected environments. It was used substrates with100% of cattle manure; 100% of cassava stems; 100% of vermiculite; 50% of cattle manure + 50% of cassava stems; 50% of cattle manure + 50% of vermiculite; 50% of cassava stems + 50% of vermiculite; and + ⅓ of cattle manure + ⅓ of cassava stems + ⅓ of vermiculite. These substrates were tested in protected areas: greenhouse; black shade net of 50% shading; and aluminized thermo-reflective screen of 50% shading. A completely randomized experimental design with five replicates of four plants was adopted. Initially, data were submitted to analysis of individual variance of the substrates, in each environment of cultivation, then performing the evaluation of the residual mean square and the analysis of these environments together for comparison. The best substrate for baruzeiro seedlings was pure vermiculite. The substrates with 100% of manure and the substrate with 33.33% of the mixed studied materials can be used for seedlings formation. The environment with screen can be indicated for the production of baruzeiro seedlings, since it gave vigor to the seedlings.
Resumo:
The seedlings production is an essential part for vegetables production. Thus, this study aimed to evaluate the environment, the substrates and the containers in the development of tomato seedlings, cv. Santa crus Kada Gigante, in Aquidauana -MS, Brazil region, from October to November, 2008. Polystyrene trays with 72; 128 and 200 cells, filled with four substrates (soil; Plantmax®; coconut fiber and vermiculite) were tested in three protected environments (greenhouse; screened with Sombrite® and screened with Aluminet®). The experimental design was completely randomized, factorial scheme 3x4 (three trays x four substrates), with four replications, being analyzed individual variance analysis and joint analysis for the environments. The environment with screens (Sombrite® and Aluminet®), the trays with 72 cells and the vermiculite produced better results.
Resumo:
The study evaluated the energy performance of pig farming integrated with maize production in mechanized no-tillage system. In this proposed conception of integration, the swine excrement is used as fertilizers in the maize crop. The system was designed involving the activities associated to the pig management and maize production (soil management, cultivation and harvest). A one-year period of analysis was considered, enabling the production of three batches of pigs and two crops of maize. To evaluate the energy performance, three indicators were created: energy efficiency, use of non-renewable resources efficiency and cost of non-renewable energy to produce protein. The energy inputs are composed by the inputs and infrastructure used by the breeding of pigs and maize production, as well as the solar energy incident on the agroecosystem. The energy outputs are represented by the products (finished pigs and maize). The results obtained in the simulation indicates that the integration improves the energy performance of pig farms, with an increase in the energy efficiency (186%) as well as in the use of the non-renewable energy resources efficiency (352%), while reducing the cost of non-renewable energy to produce protein (‑58%).
Resumo:
The aim of this work was to evaluate the energy flows of a commercial production system of swine deep bed in its finishing phase, located in Juiz de Fora, in the State of Minas Gerais, Brazil. Thus, an energy efficiency study was carried out by monitoring a lot of animals, during a 94-day period. The energy rate of each compound involved in the production process was quantified and the matrixes of energy consumption were determined in the form of animal feeding, electrical energy, piglets, material used as deep bed, human labor, equipment, swine buildings, production of alive swine for slaughter, organic fertilizer production (swine deep bed or swine deep litter). From the direct input energy, 80.57% correspond to animal feeding, 11.90% to pigs for slaughter and 6.76% to piglets, while from the energy output 53.45% correspond to the terminating swine and 46.55% to organic fertilizer (swine deep bed). By the results obtained, we can conclude that such production system has corresponded to an industrial and highly specialized agro ecosystem, importing a great part of the energy consumed in the production process, with 41% of energy efficiency.
Resumo:
The purpose of this research was to evaluate the effect of drip irrigation under different population arrangements on the phytometric features, coffee productivity and bean size classification according to sieve retention. The experiment with Coffea arabica L. cv Catuaí was carried out in Mococa, São Paulo, Brazil. The experimental design was a 6 x 2 factorial scheme in randomized blocks, with four replications. The six densities of plantation were E1 (1.60 x 0.50 m); E2 (1.60 x 0.75 m); E3 (1.60 x 1.00 m); E4 (3.20 x 0.50 m); E5 (3.20 x 0.75 m) and E6 (3.20 x 1.00 m), which were divided according to the availability of water (irrigated - I - or non-irrigated - NI - groups). Data were submitted to analysis of variance and averages compared by Tukey test at 1 and 5% of probability. Descriptive analysis of coffee beans according to sieve classification was performed. Irrigation promoted an increase in plant height, crown diameter and production of processed coffee when compared with the NI group. Interaction between population arrangement and irrigation was observed, with an increase in production and crown diameter as the spacing was decreased. Therefore, irrigation provided significant increase in coffee bean size.
Resumo:
Physical and chemical characteristics of manure are modified by different animal production systems. In cattle feeding system for young bulls there is an inversion of the proportion between forage and concentrate. In other words, the animals receive a smaller amount of forage compared to the traditional system. These changes in the manure characteristics involve changes in the treatment systems. The aim of this study was to determine the potential production of biogas of batch digesters fed with manure from young bulls that received two diets containing different proportions between forage and concentrate, with or without inoculums and submitted to three levels of temperature (25, 35 and 40(0)C). The evaluated parameters were total solids (TS) and volatile solids (VS) reduction and biogas potentials production. The digesters fed with manure from animals that received the diet 2 (80%C + 20% R) showed the largest reductions of TS and VS. About the potentials of biogas production there was interaction between the factors diet and inoculums, but no effects of temperatures. The treatment content manure from animals fed with diet 2 without inoculums presented the greatest potential of biogas production per kg of TS added (0.2123 m³).
Resumo:
The goal of this study was to evaluate the nitrogen fertilization as deep litter for pigs in order to produce biomass and accumulate nutrients by the corn. A deep litter made of rice husk as organic compound, from a commercial pig farm during finishing phase, was used. After three consecutive batches of pigs, the deep litter was subjected to a maturation period of 50 days, and samples of this material were taken for analysis of agronomic value. The experimental design was completely randomized with five replicates. The treatments consisted of doses of 0, 75, 150 and 300mg dm-3 of N of deep litter, as well as an additional treatment with ammonium sulfate, with a dosage of 150mg dm-3 of N. After 45 days, corn plants were harvested in order to evaluate the total dry weight and nutrient concentrations of their aerial parts. Dry matter increases were found with more application of deep litter. Regarding control fertilization, the use of increasing dosages of deep litter allowed accumulation of K, reduced the availability of P, Ca, Mg, Zn and B and did not alter the concentrations of N, Cu, Fe and Mn.
Resumo:
Chicken feet can be used as an alternative source of collagen for the development of new products. In this sense, the aim of this study was the production of a product similar to gelatin from collagen extracted from chicken feet and the evaluation of sensory quality. The products were produced in two distinct flavors, with grape flavor called GU and pineapple flavor called GA. Subsequently, we compared these formulations with gelatin of a trademark established in the market. We used in the verification of sensory acceptability of products a hedonic scale of 9 points and the availability of consuming the product by 30 untrained tasters. According to the results, all formulations showed good levels of acceptability, indicating the collagen from chicken feet as an alternative source of high quality in the production of gelatin.
Resumo:
Light emitting diode (LED) has been used in commercial poultry industry by presenting superior energy savings and providing feasibility on production process. The objective of this research was to evaluate performance and carcass yield of broiler chickens exposed to different LED colors compared with fluorescent lamps. For that, two experiments (E1 and E2) were performed and 2,646 Cobb® chickens were used. In experiment E1, male birds were exposed to 20 lux artificial lighting with red, yellow, blue, and white LED bulbs; and fluorescent bulb. In experiment E2, male and female birds were exposed to 15 lux artificial lighting with red and blue LED bulbs; and fluorescent bulb. Cumulative weight gain (kg), feed intake (kg), feed conversion, hot carcass weight (kg), carcass yield (%), and breast and thigh + drumstick yield (%) were used as response variables. Results showed no difference (p > 0.05) among treatments for performance, carcass yield, and cut yield in experiment E1. In experiment E2 there was only difference between genders (p < 0.05) and males showed higher total weight gain, feed intake, hot carcass weight and thigh + drumstick yield. Different LED color use had same effect as fluorescent lights on broiler performance and carcass yield.
Resumo:
Corn cropping for silage, due to the plant material exportation, intercropping with forage provides greater ground cover and straw formation for the Direct Planting System (DPS) continuity. The objective of this study was to evaluate corn production for silage in DPS intercropped with four forages (Urochloa brizantha cv. Marandu, U. ruziziensis cv. Ruziziensis, Panicum maximum cv. Tanzânia and P. maximum cv. Áries). We applied three sowing methods (in row together with corn fertilizer; by no-till sowing simultaneously to corn sowing and at V4 corn stage) and corn without intercropping. The experiment was conducted in autumn/ winter of 2010, in Selvíria - MS, in a randomized block design in factorial arrangement (4 x 3 + 1) and 4 replications. For corn, we evaluated plant height, basal stem diameter, initial and final stand and silage production and for forage dry matter production. Morphological characteristics and corn yield were not affected by intercropping when compared to sole corn crop. Forage dry matter production sown in corn row with fertilizer is a highlight, which in addition to providing greater productivity, harnesses the operation during sowing.
Resumo:
Citrus orchards are very important in Brazil, especially in São Paulo State, where occupy an area of 600,000 ha approximately. To identify sustainability degree of citrus production system, an energy analysis allows evaluating efficiency of direct and indirect applied inputs. Thus, this study aimed to evaluate citrus production system under energetic point of view, in which invested energy is paid back with citrus production; being compared within three scenarios for operational field efficiency. As result, by sensitivity analysis was determined that fuel was the main energy demander, followed by pesticides and fertilizers. In operational work capacity analysis, all combinations between efficiency (minimum, typical and maximum) and yield levels became positive in the seventh year, except for the combination minimum efficiency and 10 % less yield, positive in the eighth year. The best combination (maximum efficiency and 10 % more yield) has promoted investment payoff around the sixth and seventh year. By this study, it is possible to determine the total energy demand to produce citrus and indentify the applied inputs that need more attention by the decision-makers. Labor and seedlings can be ommited for further studies with citrus, since they were irrelevant. Management of agricultural machinery may pose an important role on decreasing environmental impact of citrus production.
Resumo:
Precision agriculture based on the physical and chemical properties of soil requires dense sampling to determine the spatial variability of these properties. This dense sampling is often expensive and time-consuming. One technique used to reduce sample numbers involves defining management zones based on information collected in the field. Some researchers have demonstrated the importance of soil electrical variables in defining management zones. The objective of this study was to evaluate the relationship between the spatial variability of the apparent electrical conductivity and the soil properties in the coffee production of mountain regions. Spatial variability maps were generated using a geostatistical method. Based on the spatial variability results, a correlation analysis, using bivariate Moran's index, was done to evaluate the relationship between the apparent electrical conductivity and soil properties. The maps of potassium (K) and remaining phosphorus (P-rem) were the closest to the spatial variability pattern of the apparent electrical conductivity.
Resumo:
Attempting to associate waste treatment to the production of clean and renewable energy, this research sought to evaluate the biological production of hydrogen using wastewater from the cassava starch treatment industry, generated during the processes of extraction and purification of starch. This experiment was carried out in a continuous anaerobic reactor with a working volume of 3L, with bamboo stems as the support medium. The system was operated at a temperature of 36°C, an initial pH of 6.0 and under variations of organic load. The highest rate of hydrogen production, of 1.1 L.d-1.L-1, was obtained with application of an organic loading rate of 35 g.L-1.d-1, in terms of total sugar content and hydraulic retention time of 3h, with a prevalence of butyric and acetic acids as final products of the fermentation process. Low C/N ratios contributed to the excessive growth of the biomass, causing a reduction of up to 35% in hydrogen production, low percentages of H2 and high concentrations of CO2in the biogas.