982 resultados para carrying
Resumo:
The seismic hazard value of any region depends upon three important components such as probable earthquake location, maximum earthquake magnitude and the attenuation equation. This paper presents a representative way of estimating these three important components considering region specific seismotectonic features. Rupture Based Seismic Hazard Analysis (RBSHA) given by Anbazhagan et al. (2011) is used to determine the probable future earthquake locations. This approach is verified on the earthquake data of Bhuj region. The probable earthquake location for this region is identified considering earthquake data till the year 2000. These identified locations match well with the reported locations after 2000. The further Coimbatore City is selected as the study area to develop a representative seismic hazard map using RBSHA approach and to compare with deterministic seismic hazard analysis. Probable future earthquake zones for Coimbatore are located considering the rupture phenomenon as per energy release theory discussed by Anbazhagan et at (2011). Rupture character of the region has been established by estimating the subsurface rupture length of each source and normalized with respect to the length of the source. Average rupture length of the source with respect to its total length is found to be similar for most of the sources in the region, which is called as the rupture character of the region. Maximum magnitudes of probable zones are estimated considering seismic sources close by and regional rupture character established. Representative GMPEs for the study area have been selected by carrying out efficacy test through an average log likelihood value (LLH) as ranking estimator and considering the Isoseismal map. New seismic hazard map of Coimbatore has been developed using the above regional representative parameters of probable earthquake locations, maximum earthquake magnitude and best suitable GMPEs. The new hazard map gives acceleration values at bedrock for maximum possible earthquakes. These results are compared with deterministic seismic hazard map and recently published probabilistic seismic hazard values. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Rice landraces are lineages developed by farmers through artificial selection during the long-term domestication process. Despite huge potential for crop improvement, they are largely understudied in India. Here, we analyse a suite of phenotypic characters from large numbers of Indian landraces comprised of both aromatic and non-aromatic varieties. Our primary aim was to investigate the major determinants of diversity, the strength of segregation among aromatic and non-aromatic landraces as well as that within aromatic landraces. Using principal component analysis, we found that grain length, width and weight, panicle weight and leaf length have the most substantial contribution. Discriminant analysis can effectively distinguish the majority of aromatic from non-aromatic landraces. More interestingly, within aromatic landraces long-grain traditional Basmati and short-grain non-Basmati aromatics remain morphologically well differentiated. The present research emphasizes the general patterns of phenotypic diversity and finds out the most important characters. It also confirms the existence of very unique short-grain aromatic landraces, perhaps carrying signatures of independent origin of an additional aroma quantitative trait locus in the indica group, unlike introgression of specific alleles of the BADH2 gene from the japonica group as in Basmati. We presume that this parallel origin and evolution of aroma in short-grain indica landraces are linked to the long history of rice domestication that involved inheritance of several traits from Oryza nivara, in addition to O. rufipogon. We conclude with a note that the insights from the phenotypic analysis essentially comprise the first part, which will likely be validated with subsequent molecular analysis.
Resumo:
Free-standing Pt-aluminide (PtAl) bond coats exhibit a linear stress strain response under tensile loading and undergo brittle cleavage fracture at temperatures below the brittle-to-ductile transition temperature (BDTT). Above the BDTT, these coatings show yielding and fail in a ductile manner. In this paper, the various micromechanisms affecting the tensile fracture stress (FS) below the BDTT and yield strength (YS) above the BDTT in a PtAl bond coat have been ascertained and quantified at various temperatures. The micromechanisms have been identified by carrying out microtensile testing of stand-alone PtAl coating specimens containing different levels of Pt at temperatures between room temperature and 1100 degrees C and correlation of the corresponding fracture mechanisms with the deformation substructure in the coating. An important aspect of the influence of Pt on the tensile behavior, slip characteristics, FS/YS and BDTT in the PtAl coating has also been examined. The addition of Pt enhances the FS of the coating by Pt solid solution strengthening and imparts a concomitant increase in fracture toughness and yet causes a significant increase in the BDTT of the coating. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
Resumo:
Background: Muscle-specific deficiency of iron-sulfur (Fe-S) cluster scaffold protein (ISCU) leads to myopathy. Results: Cells carrying the myopathy-associated G50E ISCU mutation demonstrate impaired Fe-S cluster biogenesis and mitochondrial dysfunction. Conclusion: Reduced mitochondrial respiration as a result of diminished Fe-S cluster synthesis results in muscle weakness in myopathy patients. Significance: The molecular mechanism behind disease progression should provide invaluable information to combat ISCU myopathy. Iron-sulfur (Fe-S) clusters are versatile cofactors involved in regulating multiple physiological activities, including energy generation through cellular respiration. Initially, the Fe-S clusters are assembled on a conserved scaffold protein, iron-sulfur cluster scaffold protein (ISCU), in coordination with iron and sulfur donor proteins in human mitochondria. Loss of ISCU function leads to myopathy, characterized by muscle wasting and cardiac hypertrophy. In addition to the homozygous ISCU mutation (g.7044GC), compound heterozygous patients with severe myopathy have been identified to carry the c.149GA missense mutation converting the glycine 50 residue to glutamate. However, the physiological defects and molecular mechanism associated with G50E mutation have not been elucidated. In this report, we uncover mechanistic insights concerning how the G50E ISCU mutation in humans leads to the development of severe ISCU myopathy, using a human cell line and yeast as the model systems. The biochemical results highlight that the G50E mutation results in compromised interaction with the sulfur donor NFS1 and the J-protein HSCB, thus impairing the rate of Fe-S cluster synthesis. As a result, electron transport chain complexes show significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, the G50E mutant mitochondria display enhancement in iron level and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. Thus, our findings provide compelling evidence that the respiration defect due to impaired biogenesis of Fe-S clusters in myopathy patients leads to manifestation of complex clinical symptoms.
Resumo:
Staphylococcus aureus is a commensal gram positive bacteria which causes severe and non severe infections in humans and livestock. In India, ST772 is a dominant and ST672 is an emerging clone of Staphylococcus aureus. Both cause serious human diseases, and carry type V SCCmec elements. The objective of this study was to characterize SCCmec type V elements of ST772 and ST672 because the usual PCR methods did not amplify all primers specific to the type. Whole genome sequencing analysis of seven ST772 and one ST672 S. aureus isolates revealed that the SCCmec elements of six of the ST772 isolates were the smallest of the extant type V elements and in addition have several other novel features. Only one ST772 isolate and the ST672 isolate carried bigger SCCmec cassettes which were composites carrying multiple ccrC genes. These cassettes had some similarities to type V SCCmec element from M013 isolate (ST59) from Taiwan in certain aspects. SCCmec elements of all Indian isolates had an inversion of the mec complex, similar to the bovine SCCmec type X. This study reveals that six out of seven ST772 S. aureus isolates have a novel type V (5C2) SCCmec element while one each of ST772 and ST672 isolates have a composite SCCmec type V element (5C2&5) formed by the integration of type V SCCmec into a MSSA carrying a SCC element, in addition to the mec gene complex inversions and extensive recombinations.
Resumo:
Multiple copies of a gene require enhanced investment on the part of the cell and, as such, call for an explanation. The observation that Escherichia coli has four copies of initiator tRNA (tRNA(i)) genes, encoding a special tRNA (tRNA(fMet)) required to start protein synthesis, is puzzling particularly because the cell appears to be unaffected by the removal of one copy. However, the fitness of an organism has both absolute and relative connotations. Thus, we carried out growth competition experiments between E. coli strains that differ in the number of tRNA(i) genes they contain. This has enabled us to uncover an unexpected link between the number of tRNA(i) genes and protein synthesis, nutritional status, and fitness. Wild-type strains with the canonical four tRNA(i) genes are favored in nutrient-rich environments, and those carrying fewer are favored in nutrient-poor environments. Auxotrophs behave as if they have a nutritionally poor internal environment. A heuristic model that links tRNA(i) gene copy number, genetic stress, and growth rate accounts for the findings. Our observations provide strong evidence that natural selection can work through seemingly minor quantitative variations in gene copy number and thereby impact organismal fitness.
Resumo:
A new series of donor-acceptor-donor (D-A-D) type luminescent mesogens carrying 2-methoxy-3-cyanopyridine as a central core linked with variable alkoxy chain lengths (m = 6 and 8) as terminal substituents was synthesized and characterized using spectral methods. The newly synthesized molecules were subjected to single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), differential scanning calorimetric (DSC), polarizing optical microscopy (POM), and fluorescence emission studies in order to ascertain their mesogenic and photophysical properties. The SCXRD data on 4a and 4b reveal that the presence of short intermolecular contacts, viz. C-H center dot center dot center dot N, C-H center dot center dot center dot O, C-H center dot center dot center dot pi, and pi center dot center dot center dot pi interactions, is responsible for their crystal packing. The measured torsion angle values indicate that molecules possess distorted non-planar structure. The DSC, POM, and PXRD studies confirm that all the molecules show thermotropic liquid crystalline behaviour and exhibit rectangular columnar phase. Further, their UV-visible and fluorescence spectral studies reveal that the target molecules are luminescent displaying a strong absorption band in the range of 335-340 nm and a blue fluorescence emission band in the range of 395-425 nm (both in solution and film state) with good fluorescence quantum yields (10-49 %).
Resumo:
Retaining the morphology of gallium oxide nanostructures during structural transformations or after doping with lanthanide ions is not facile. Here we report on the sonochemical synthesis of nearly monodisperse similar to 550 nm long nano-spindles of undoped and La-doped alpha-GaOOH. The transformation of as-prepared undoped and La-doped alpha-GaOOH powders into the corresponding undoped and La-doped Ga2O3 phases (alpha and beta) was achieved by carrying out controlled annealing at elevated temperatures under optimized conditions. The formation of gallium oxide nano-spindles is explained by invoking the phenomenon of oriented attachment, as amply supported by electron microscopy. Interestingly, the morphology of the gallium oxide nano-spindles remained conserved even after doping them with more than 1.4 at% of La3+ ions. Such robust structural stability could be attributed to the oriented attachment-type growth observed in the nano-spindles. The as-prepared samples and the corresponding annealed ones were thoroughly characterized by powder X-ray diffraction (PXRD), electron microscopy (SEM, TEM, and STEM-EDS) and X-ray photoelectron spectroscopy (XPS). Finally, photoluminescence from the single-crystalline undoped and La-doped beta-Ga2O3 was explored.
Resumo:
The problem of modelling the transient response of an elastic-perfectly-plastic cantilever beam, carrying an impulsively loaded tip mass, is,often referred to as the Parkes cantilever problem 25]; The permanent deformation of a cantilever struck transversely at its tip, Proc. R. Soc. A., 288, pp. 462). This paradigm for classical modelling of projectile impact on structures is re-visited and updated using the mesh-free method, smoothed particle hydrodynamics (SPH). The purpose of this study is to investigate further the behaviour of cantilever beams subjected to projectile impact at its tip, by considering especially physically real effects such as plastic shearing close to the projectile, shear deformation, and the variation of the shear strain along the length and across the thickness of the beam. Finally, going beyond macroscopic structural plasticity, a strategy to incorporate physical discontinuity (due to crack formation) in SPH discretization is discussed and explored in the context of tip-severance of the cantilever beam. Consequently, the proposed scheme illustrates the potency for a more refined treatment of penetration mechanics, paramount in the exploration of structural response under ballistic loading. The objective is to contribute to formulating a computational modelling framework within which transient dynamic plasticity and even penetration/failure phenomena for a range of materials, structures and impact conditions can be explored ab initio, this being essential for arriving at suitable tools for the design of armour systems. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In a recent work [U. Harbola, B. K. Agrawalla, and S. Mukamel, J. Chem. Phys. 141, 074107 (2014)], we have presented a superoperator (Liouville space) diagrammatic formulation of spontaneous and stimulated optical signals from current-carrying molecular junctions. We computed the diagrams that contribute to the spontaneous light emission SLE (fluorescence and Raman) signal using a diagrammatic method which clearly distinguishes between the Raman and the fluorescence contributions. We pointed out some discrepancies with the work of Galperin, Ratner and Nitzan (GRN) [M. Galperin, M. A. Ratner and, A. Nitzan, J. Chem. Phys. 130, 144109 (2009)]. In their response [M. Galperin, M. A. Ratner and A. Nitzan, “Comment on‘ Frequency-domain stimulated and spontaneous light emission signals at molecular junctions’” [J. Chem. Phys. 141, 074107 (2014)], J. Chem. Phys. 142, 137101 (2015)] to our work, GRN have argued that there are no differences in the choice of Raman diagrams in both works. Here we reply to their points and show where the differences exist.
Resumo:
A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies. (c) 2015 AIP Publishing LLC.
Resumo:
A closed-form expression for the dual of dissipation potential is derived within the framework of irreversible thermodynamics using the principles of dimensional analysis and self-similarity. Through this potential, a damage evolution law is proposed for concrete under fatigue loading using the concepts of damage mechanics in conjunction with fracture mechanics. The proposed law is used to compute damage in a volume element when a member is subjected to fatigue loading. The evolution of damage from microcracking to macrocracking of the entire member is captured through a series of volume elements failing one after the other. The number of loading cycles to failure of the member is obtained as the summation of number of cycles to failure for each individual volume element. A parametric study is conducted to determine the effect of the size of the volume element on the model's prediction of fatigue life. A global damage index is also defined, and the residual moment carrying capacity of damaged beams is evaluated. Through a deterministic sensitivity analysis, it is found that the load range and maximum aggregate size are the most influencing parameters on the fatigue life of a plain concrete beam.
Resumo:
The nonlinear optical response of a current-carrying single molecule coupled to two metal leads and driven by a sequence of impulsive optical pulses with controllable phases and time delays is calculated. Coherent (stimulated, heterodyne) detection of photons and incoherent detection of the optically induced current are compared. Using a diagrammatic Liouville space superoperator formalism, the signals are recast in terms of molecular correlation functions which are then expanded in the many-body molecular states. Two dimensional signals in benzene-1,4-dithiol molecule show cross peaks involving charged states. The correlation between optical and charge current signal is also observed. (C) 2015 AIP Publishing LLC.
Resumo:
This work presents the development of piezocomposites made up of Macro Fiber Composites (MFCs) for aerospace applications and specifically involves, their computational analysis, material characterization and certain parametric studies. MFC was developed by NASA Langley Research Center in 1996 and currently is being distributed by Smart Material Co. 1] worldwide and finds applications both as an actuator as well as for sensor in various engineering applications. In this work, MFC is being modeled as an actuator and a theoretical formulation based on Variational Asymptotic Method (VAM) 2] is presented to analyse the laminates made up of MFCs. VAM minimizes the total electro-mechanical energy for the MFC laminate and approaches the exact solution asymptotically by making use of certain small parameters inherent to the problem through dimensional reduction. VAM provides closed form solutions for 1D constitutive law, recovery relations of warpings, 3D stress/strain fields and displacements and hence an ideal tool for carrying out parametric and design studies in such applications. VAM is geometrically exact and offers rigorous material characterization through cross-sectional analysis and dimensional reduction.
Resumo:
Two series of periodically clickable polyesters were prepared; one of them carries alkylene segments along its backbone, whereas the other carries poly(ethylene glycol) (PEG) segments. These polyesters were clicked with either MPEG-350 azide or docosyl (C22) azide to yield periodically grafted amphiphilic copolymers (PGACs) carrying either flexible hydrophilic or crystallizable hydrophobic backbone segments. The immiscibility between hydrocarbon and PEG segments causes both of these systems to fold in either a zigzag or hairpin-like conformation; the hairpin-like conformation appears to be preferred when flexible PEG segments are present in the backbone. The folded chains further reorganize in the solid state to develop a lamellar morphology that permits the collocation of the PEG and hydrocarbon (HC) segments within alternate domains; evidence for the self-segregation was gained from DSC, SAXS, and AFM studies. SAXS studies revealed the formation of an extended lamellar structure, whereas AFM images showed uniform layered morphology with layer heights that matched reasonably well with the interlamellar spacing obtained from the SAXS study. Labeling One representative PGAC, carrying crystallizable long alkylene segments in the backbone and pendant PEG-350 side chains, with a small mole fraction of pyrene fluorophore permitted the examination of the conformational transition that occurs upon going from a good to a poor solvent; this single-chain folded conformation, we postulate, is the intermediate that organizes into the lamellar morphology.