923 resultados para broadband emitting
Resumo:
The properties of Langmuir and Langmuir-Blodgett (LB) films from a block copolymer with polyethylene oxide and phenylene-vinylene moieties are reported. The LB films were successfully transferred onto several types of substrates, with sufficient quality to allow for evaporation of a metallic electrode on top of the LB films to produce polymer light emitting diodes (PLEDs). The photoluminescence and electroluminescence spectra of the LB film and device were similar, featuring an emission at ca. 475 nm, from which we could infer that the emission mechanisms are essentially the same as in poly(p-phenylene) derivatives. Analogously to other PLEDs the current versus voltage characteristics of the LB-based device could be explained with the Arkhipov model according to which charge transport occurs among localized sites. The implications for nanotechnology of the level of control that may be achieved with LB devices will also be discussed.
Langmuir and langmuir-blodgett films of polyfluorenes and their use in polymer light-emitting diodes
Resumo:
The Langmuir and Langmuir-Blodgett (LB) film properties of two polyfluorene derivatives, namely poly(2,7-9,9'-dihexylfluorene-dyil) (PDHF) and poly(9,9 dihexylfluorene-dyil-vynilene-alt-1,4-phenylene-vyninele) (PDHF-PV), are reported. Surface pressure (Pi-A) and surface potential (Delta V-A) isotherms indicated that PDHF-PV forms true monolayers at the air/water interface, but PDHF does not. LB films could be transferred onto various types of substrate for both PDHF and PDHF-PV. Only the LB films from PDHF-PV could withstand deposition of a layer of evaporated metal to form a light-emitting diode (PLED), which had typical rectifying characteristics and emitted blue light. It is inferred that the ability of the polymer to form true monomolecular layers at the air/water interface seems to be associated with the viability of the LB films in PLEDs.
Resumo:
We report on light-emitting devices based on a green-phosphor compound (Mn-doped zinc silicate, Zn2SiO4: Mn) dispersed in a conductive polymeric blend (poly-o-methoxyaniline/polyvinylene fluoride, POMA/PVDF-TrFE). The devices exhibited high luminance in the green, good stability and homogeneous brilliance over effective areas up to 5 cm(2). The electroluminescence (EL) spectrum presented essentially the same characteristics as the photoluminescence (PL) and cathodoluminescence spectra, indicating that the light emission originates from decay of the same excited species, regardless of the excitation source. Operating characteristics were analyzed with current density - voltage (J - V) and luminance voltage ( L - V) curves to investigate the nature of the electroluminescence of the active material, which is still not completely understood.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10(-4) Ohm cm, 8.08 cm(2)/V-s and -1.5 x 10(21) cm(-3), respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO(2) thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m(2) as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We point out that if the Majoron-like scheme is implemented within a 3-3-1 model, there must exist at least three different mass scales for the scalar vacuum expectation values in the model. ©1999 The American Physical Society.
Resumo:
Polyfluorenes are promising materials for the emitting layer of polymer light emitting devices (PLEDs) with blue emission. In this work, we report on PLEDs fabricated with Langmuir-Blodgett (LB) films of a polyfluorene derivative, namely poly(9,9-di-hexylfluorenediyl vinylene-alt-1,4-phenylenevinylene) (PDHF-PV). Y-type LB films were transferred onto ITO substrates at a surface pressure of 35 mN m-1 and with dipping speed of 3 mm min -1. A thin aluminum layer was evaporated on top of the LB film, thus yielding a sandwich structure (ITO/PDHF-PV(LB)/Al). Current-voltage (I vs V) measurements indicate that the device displays a classical behavior of a rectifying diode. The threshold value is approximately 5 V, and the onset for visible light emission occurs at ca. 10 V. From the a.c. electrical responses we infer that the active layer has a typical behavior of PLEDs where the real component of ac conductivity obeys a power-law with the frequency. Cole-Cole plots (Im(Z) vs. Re(Z)) for the device exhibit a series of semicircles, the diameter of which decreases with increasing forward bias. This PLED structure is modeled by a parallel resistance and capacitance combination, representing the dominant mechanisms of charge transport and polarization in the organic layer, in series with a resistance representing the ITO contact. Overall, the results presented here demonstrate the feasibility of LEDs made with LB films of PDHF-PV.
Resumo:
The aim of this in vitro study was to compare the photoactivation effects of QTH (Quartz-Tungsten-Halogen) and LED (Light-Emitting Diode) on the SBS (Shear Bond Strength) of orthodontic brackets at different debond times. Seventy-two bovine lower incisors were randomly divided into two groups according to the photoactivation system used (QTH or LED). The enamel surfaces were conditioned with Transbond self-etching primer, and APC (Adhesive Pre-Coated) brackets were used in all specimens. Group I was cured with QTH for 20 s and Group II with LED for 10 s. Both groups were subdivided according to the different experimental times after bonding (immediately, 24 h and 7 days). The specimens were tested for SBS and the enamel surfaces were analyzed according to the Adhesive Remnant Index (ARI). The statistical analysis included the Tukey's test to evaluate the main effects of photoactivation and debond time on SBS. The Chi-square test was used to compare the ARI values found for each group, and no statistically significant difference was observed. The debond time of 7 days for QTH photoactivation showed statistically greater values of SBS when compared to the immediate and 24 h periods. There was no statistically significant difference between the QTH and LED groups immediately and after the 24 h period. In conclusion, bonding orthodontic brackets with LED photoactivation for 10 s is suggested because it requires a reduced clinical chair time.
Resumo:
The objective of this study was to evaluate the effect of photodynamic therapy with erythrosine and rose bengal using a light-emitting diode (LED) on planktonic cultures of S. mutans. Ten S. mutans strains, including nine clinical strains and one reference strain (ATCC 35688), were used. Suspensions containing 10 6 cells/mL were prepared for each strain and were tested under different experimental conditions: a) LED irradiation in the presence of rose bengal as a photosensitizer (RB+L+); b) LED irradiation in the presence of erythrosine as a photosensitizer (E+L+); c) LED irradiation only (P-L+); d) treatment with rose bengal only (RB+L-); e) treatment with erythrosine only (E+L-); and f) no LED irradiation or photosensitizer treatment, which served as a control group (P-L-). After treatment, the strains were seeded onto BHI agar for determination of the number of colony-forming units (CFU/mL). The results were submitted to analysis of variance and the Tukey test (p ≤ 0.05). The number of CFU/mL was significantly lower in the groups submitted to photodynamic therapy (RB+L+ and E+L+) compared to control (P-L-), with a reduction of 6.86 log 10 in the RB+L+ group and of 5.16 log 10 in the E+L+ group. Photodynamic therapy with rose bengal and erythrosine exerted an antimicrobial effect on all S. mutans strains studied.
Resumo:
This paper reports on the sol-gel preparation and structural and optical characterization of new Er3+-doped SiO2-Nb 2O5 nanocomposite planar waveguides. Erbium-doped (100-x)SiO2-xNb2O5 waveguides were deposited on silica-on-silicon substrates and Si(1 0 0) by the dip-coating technique. The waveguides exhibited uniform refractive index distribution across the thickness, efficient light injection at 1538 nm, and low losses at 632 and 1538 nm. The band-gap values lied between 4.12 eV and 3.55 eV for W1-W5, respectively, showing an excellent transparency in the visible and near infrared region for the waveguides. Fourier Transform Infrared (FTIR) Spectroscopy analysis evidenced SiO2-Nb2O5 nanocomposite formation with controlled phase separation in the films. The HRTEM and XRD analyses revealed Nb2O5 orthorhombic T-phase nanocrystals dispersed in a silica-based host. Photoluminescence (PL) analysis showed a broad band emission at 1531 nm, assigned to the 4I13/2 → 4I15/2 transition of the Er3+ ions present in the nanocomposite, with a full-width at half medium of 48-68 nm, depending on the niobium content and annealing. Hence, these waveguides are excellent candidates for application in integrated optics, especially in EDWA and WDM devices. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Includes bibliography