937 resultados para blood clotting factor 13
Resumo:
PAH (N-(4-aminobenzoyl)glycin) clearance measurements have been used for 50 years in clinical research for the determination of renal plasma flow. The quantitation of PAH in plasma or urine is generally performed by colorimetric method after diazotation reaction but the measurements must be corrected for the unspecific residual response observed in blank plasma. We have developed a HPLC method to specifically determine PAH and its metabolite NAc-PAH using a gradient elution ion-pair reversed-phase chromatography with UV detection at 273 and 265 nm, respectively. The separations were performed at room temperature on a ChromCart (125 mmx4 mm I.D.) Nucleosil 100-5 microm C18AB cartridge column, using a gradient elution of MeOH-buffer pH 3.9 1:99-->15:85 over 15 min. The pH 3.9 buffered aqueous solution consisted in a mixture of 375 ml sodium citrate-citric acid solution (21.01 g citric acid and 8.0 g NaOH per liter), added up with 2.7 ml H3PO4 85%, 1.0 g of sodium heptanesulfonate and completed ad 1000 ml with ultrapure water. The N-acetyltransferase activity does not seem to notably affect PAH clearances, although NAc-PAH represents 10.2+/-2.7% of PAH excreted unchanged in 12 healthy subjects. The performance of the HPLC and the colorimetric method have been compared using urine and plasma samples collected from healthy volunteers. Good correlations (r=0.94 and 0.97, for plasma and urine, respectively) are found between the results obtained with both techniques. However, the colorimetric method gives higher concentrations of PAH in urine and lower concentrations in plasma than those determined by HPLC. Hence, both renal (ClR) and systemic (Cls) clearances are systematically higher (35.1 and 17.8%, respectively) with the colorimetric method. The fraction of PAH excreted by the kidney ClR/ClS calculated from HPLC data (n=143) is, as expected, always <1 (mean=0.73+/-0.11), whereas the colorimetric method gives a mean extraction ratio of 0.87+/-0.13 implying some unphysiological values (>1). In conclusion, HPLC not only enables the simultaneous quantitation of PAH and NAc-PAH, but may also provide more accurate and precise PAH clearance measurements.
Resumo:
PURPOSE This prospective multicenter phase III study compared the efficacy and safety of a triple combination (bortezomib-thalidomide-dexamethasone [VTD]) versus a dual combination (thalidomide-dexamethasone [TD]) in patients with multiple myeloma (MM) progressing or relapsing after autologous stem-cell transplantation (ASCT). PATIENTS AND METHODS Overall, 269 patients were randomly assigned to receive bortezomib (1.3 mg/m(2) intravenous bolus) or no bortezomib for 1 year, in combination with thalidomide (200 mg per day orally) and dexamethasone (40 mg orally once a day on 4 days once every 3 weeks). Bortezomib was administered on days 1, 4, 8, and 11 with a 10-day rest period (day 12 to day 21) for eight cycles (6 months), and then on days 1, 8, 15, and 22 with a 20-day rest period (day 23 to day 42) for four cycles (6 months). Results Median time to progression (primary end point) was significantly longer with VTD than TD (19.5 v 13.8 months; hazard ratio, 0.59; 95% CI, 0.44 to 0.80; P = .001), the complete response plus near-complete response rate was higher (45% v 25%; P = .001), and the median duration of response was longer (17.2 v 13.4 months; P = .03). The 24-month survival rate was in favor of VTD (71% v 65%; P = .093). Grade 3 peripheral neuropathy was more frequent with VTD (29% v 12%; P = .001) as were the rates of grades 3 and 4 infection and thrombocytopenia. CONCLUSION VTD was more effective than TD in the treatment of patients with MM with progressive or relapsing disease post-ASCT but was associated with a higher incidence of grade 3 neurotoxicity.
Resumo:
Perfusion experiments with horseradish peroxidase have established that the morphological substrate of the blood-brain barrier is represented by microvascular endothelial cells. They are characterized by complexly arranged tight junctions and a very low rate of transcytotic vesicular transport. They express transport enzymes, carrier systems and brain endothelial cell-specific molecules of unknown function not expressed by any other endothelial cell population. These blood-brain barrier properties are not intrinsic to these cells but are inducible by the surrounding brain tissue. Type I astrocytes injected into the anterior eye chamber of the rat or onto the chick chorioallantoic membrane are able to induce a host-derived angiogenesis and some blood-brain barrier properties in endothelial cells of non-neural origin. Recently we have shown that this cellular interaction is due to the secretion of a soluble astrocyte derived factor(s). Astrocytes are also implicated in the maintenance, functional regulation and the repair of the blood-brain barrier. Complex interactions between other constituents of the microenvironment surrounding the endothelial cells, such as the basement membrane, pericytes, nerve endings, microglial cells and the extracellular fluid, take place and are required for the proper functioning of the blood-brain barrier, which in addition is regionally different as reflected by endothelial cell heterogeneity.
Resumo:
The brain uses lactate produced by glycolysis as an energy source. How lactate originated from the blood stream is used to fuel brain metabolism is not clear. The current study measures brain metabolic fluxes and estimates the amount of pyruvate that becomes labeled in glial and neuronal compartments upon infusion of [3-(13) C]lactate. For that, labeling incorporation into carbons of glutamate and glutamine was measured by (13) C magnetic resonance spectroscopy at 14.1 T and analyzed with a two-compartment model of brain metabolism to estimate rates of mitochondrial oxidation, glial pyruvate carboxylation, and the glutamate-glutamine cycle as well as pyruvate fractional enrichments. Extracerebral lactate at supraphysiological levels contributes at least two-fold more to replenish the neuronal than the glial pyruvate pools. The rates of mitochondrial oxidation in neurons and glia, pyruvate carboxylase, and glutamate-glutamine cycles were similar to those estimated by administration of (13) C-enriched glucose, the main fuel of brain energy metabolism. These results are in agreement with primary utilization of exogenous lactate in neurons rather than astrocytes. © 2014 Wiley Periodicals, Inc.
Resumo:
(13)C magnetic resonance spectroscopy (MRS) combined with the administration of (13)C labeled substrates uniquely allows to measure metabolic fluxes in vivo in the brain of humans and rats. The extension to mouse models may provide exclusive prospect for the investigation of models of human diseases. In the present study, the short-echo-time (TE) full-sensitivity (1)H-[(13)C] MRS sequence combined with high magnetic field (14.1 T) and infusion of [U-(13)C6] glucose was used to enhance the experimental sensitivity in vivo in the mouse brain and the (13)C turnover curves of glutamate C4, glutamine C4, glutamate+glutamine C3, aspartate C2, lactate C3, alanine C3, γ-aminobutyric acid C2, C3 and C4 were obtained. A one-compartment model was used to fit (13)C turnover curves and resulted in values of metabolic fluxes including the tricarboxylic acid (TCA) cycle flux VTCA (1.05 ± 0.04 μmol/g per minute), the exchange flux between 2-oxoglutarate and glutamate Vx (0.48 ± 0.02 μmol/g per minute), the glutamate-glutamine exchange rate V(gln) (0.20 ± 0.02 μmol/g per minute), the pyruvate dilution factor K(dil) (0.82 ± 0.01), and the ratio for the lactate conversion rate and the alanine conversion rate V(Lac)/V(Ala) (10 ± 2). This study opens the prospect of studying transgenic mouse models of brain pathologies.
Resumo:
Membrane-permeable calmodulin inhibitors, such as the napthalenesulfonamide derivatives W-7/W-13, trifluoperazine, and calmidazolium, are used widely to investigate the role of calcium/calmodulin (Ca2+/CaM) in living cells. If two chemically different inhibitors (e.g. W-7 and trifluoperazine) produce similar effects, investigators often assume the effects are due to CaM inhibition. Zeta potential measurements, however, show that these amphipathic weak bases bind to phospholipid vesicles at the same concentrations as they inhibit Ca 2 /CaM; this suggests that they also bind to the inner leaflet of the plasma membrane, reducing its negative electrostatic surface potential. This change will cause electrostatically bound clusters of basic residues on peripheral (e.g. Src and K-Ras4B) and integral (e.g. epidermal growth factor receptor (EGFR)) proteins to translocate from the membrane to the cytoplasm. We measured inhibitor-mediated translocation of a simple basic peptide corresponding to the calmodulin-binding juxtamembrane region of the EGFR on model membranes; W-7/W-13 causes translocation of this peptide from membrane to solution, suggesting that caution must be exercised when interpreting the results obtained with these inhibitors in living cells. We present evidence that they exert dual effects on autophosphorylation of EGFR;W-13 inhibits epidermal growth factordependent EGFR autophosphorylation under different experimental conditions, but in the absence of epidermal growth factor, W-13 stimulates autophosphorylation of the receptor in four different cell types. Our interpretation is that the former effect is due toW-13inhibition of Ca 2 /CaM, but thelatter results could be due to binding of W-13 to the plasma membrane.
Resumo:
The age of erythrocyte concentrates (EC) in transfusion medicine and the adverse outcomes when transfusing long-term-stored EC are highly controversial issues. Whereas the definition of a short-term-stored EC or a long-term-stored EC is unclear in clinical trials, data based on in vitro storage assays can help defining a limit in addition of the expiration date. The present review merges together these data in order to highlight an EC age cut-off and points out potential misleading consideration. The analysis of in vitro data highlights the presence of reversible and irreversible storage lesions and demonstrates that red blood cells (RBC) exhibit two limits during storage: one around 2 weeks and another one around 4 weeks of storage. Of particular importance, the first lesions to appear, i.e. the reversible ones, are per se reversible once transfused, whereas the irreversible lesions are not. In clinical trials, the EC age cut-off for short-term storage is in general fewer than 14 days (11 ± 4 days) and more disperse for long-term-stored EC (17 ± 13 days), regardless the clinical outcomes. Taking together, EC age cut-off in clinical trials does not totally fall into line of in vitro aging data, whereas it is the key criteria in clinical studies. Long-term-stored EC considered in clinical trials are not probably old enough to answer the question: "Does transfusion of long-term-stored EC (older than 4 weeks) result in worse clinical outcomes?" Depending on ethical concerns and clinical practices, older EC than currently assayed in clinical trials should have to be considered. These two worlds trying to understand the aging of erythrocytes and the impact on patients do not seem to speak the same language.
Resumo:
Epidermal growth factor (EGF) and insulin induced similar effects in isolated rat adipocytes. To determine whether EGF and insulin produced similar effects through the same mechanisms, we focused on lipolysis. Insulin inhibited the lipolysis stimulated by isoproterenol, glucagon (either alone or in combination with adenosine deaminase), adenosine deaminase itself, or forskolin. In contrast, EGF did not inhibit the lipolysis stimulated by forskolin or by hormones when the cells were also incubated with adenosine deaminase. The effect of insulin, but not that of EGF, on isoproterenol-stimulated lipolysis disappeared when adipocytes were incubated with 1 microM wortmannin. These results indicate that EGF and insulin affected lipolysis through different mechanisms. We observed that EGF, but not insulin, increased cytosolic Ca2+. The effect of EGF, but not that of insulin, disappeared when the cells were incubated in a Ca2+-free medium. We suggest that EGF, but not insulin, mediate its antilipolytic effect through a Ca2+-dependent mechanism which, however, do not involve Ca2+-activated protein kinase C isoforms. This is based on the following: 1) phorbol 12-myristate 13-acetate affected lipolysis in an opposite way to that of EGF; and 2) the protein kinase C inhibitor bisindolylmaleimide GF 109203X did not affect the antilipolytic action of EGF. Our results indicate that the antilipolytic effect of EGF resembles more that of vasopressin than that of insulin.
Resumo:
Staphylococcus aureus is a major cause of serious infections in humans and animals and a vaccine is becoming a necessity. Lactococcus lactis is a non-pathogenic bacterium that can be used as a vector for the delivery of antigens. We investigated the ability of non-living L. lactis heterologously expressing S. aureus clumping factor A (ClfA) and fibronectin-binding protein A (FnbpA), alone or together, to elicit an immune response in rats and protect them from S. aureus experimental infective endocarditis (IE). L. lactis ClfA was used for immunization against S. aureus Newman (expressing ClfA but not FnbpA), while L. lactis ClfA, L. lactis FnbpA, as well as L. lactis ClfA/FnbpA, were used against S. aureus P8 (expressing ClfA and FnbpA). Vaccination of rats with L. lactis ClfA elicited antibodies that inhibited binding of S. aureus Newman to fibrinogen, triggered the production of IL-17A and conferred protection to 13/19 (68%) of the animals from IE (P<0.05). Immunization with L. lactis ClfA, L. lactis FnbpA or L. lactis ClfA/FnbpA also produced antibodies against the target proteins, but these did not prevent binding of S. aureus P8 to fibrinogen or fibronectin and did not protect animals against S. aureus P8 IE. Moreover, immunization with constructs containing FnbpA did not increase IL-17A production. These results indicate that L. lactis is a valuable antigen delivery system able to elicit efficient humoral and cellular responses. However, the most appropriate antigens affording protection against S. aureus IE are yet to be elucidated.
Resumo:
The GH-2000 and GH-2004 projects have developed a method for detecting GH misuse based on measuring insulin-like growth factor-I (IGF-I) and the amino-terminal pro-peptide of type III collagen (P-III-NP). The objectives were to analyze more samples from elite athletes to improve the reliability of the decision limit estimates, to evaluate whether the existing decision limits needed revision, and to validate further non-radioisotopic assays for these markers. The study included 998 male and 931 female elite athletes. Blood samples were collected according to World Anti-Doping Agency (WADA) guidelines at various sporting events including the 2011 International Association of Athletics Federations (IAAF) World Athletics Championships in Daegu, South Korea. IGF-I was measured by the Immunotech A15729 IGF-I IRMA, the Immunodiagnostic Systems iSYS IGF-I assay and a recently developed mass spectrometry (LC-MS/MS) method. P-III-NP was measured by the Cisbio RIA-gnost P-III-P, Orion UniQ? PIIINP RIA and Siemens ADVIA Centaur P-III-NP assays. The GH-2000 score decision limits were developed using existing statistical techniques. Decision limits were determined using a specificity of 99.99% and an allowance for uncertainty because of the finite sample size. The revised Immunotech IGF-I - Orion P-III-NP assay combination decision limit did not change significantly following the addition of the new samples. The new decision limits are applied to currently available non-radioisotopic assays to measure IGF-I and P-III-NP in elite athletes, which should allow wider flexibility to implement the GH-2000 marker test for GH misuse while providing some resilience against manufacturer withdrawal or change of assays. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
High blood pressure (BP) has been ranked as the most important risk factor worldwide regarding attributable deaths. Dietary habits are major determinants of BP. Among them, frequent intake of low-fat dairy products may protect against hypertension. Our aim was to assess the relationship between low-fat dairy product intake and BP levels and their changes after 12 month follow-up in a cohort of asymptomatic older persons at high cardiovascular risk recruited into a large-scale trial assessing the effects of Mediterranean diets on cardiovascular outcomes. Data from 2290 participants, including 1845 with hypertension, were available for analyses. Dairy products were not a specific part of the intervention; thus, data were analysed as an observational cohort. Dietary information was collected with validated semi-quantitative FFQ and trained personnel measured BP. To assess BP changes, we undertook cross-sectional analyses at baseline and at the end of follow-up and longitudinal analyses. A statistically significant inverse association between low-fat dairy product intake and systolic BP was observed for the 12-month longitudinal analysis. In the longitudinal analysis, the adjusted systolic and diastolic BP were significantly lower in the highest quintile of low-fat dairy product intake ( 2 4·2 (95% CI 2 6·9, 2 1·4) and 2 1·8 (95% CI 2 3·2, 2 0·4) mmHg respectively), whereas the point estimates for the difference in diastolic BP indicated a modest non-significant inverse association. Intake of low-fat dairy products was inversely associated with BP in an older population at high cardiovascular risk, suggesting a possible protective effect against hypertension.
Resumo:
Nitric oxide (NO) has been shown to exert cytotoxic effects on tumor cells. We have reported that EC219 cells, a rat-brain-microvessel-derived endothelial cell line, produced NO through cytokine-inducible NO synthase (iNOS), the induction of which was significantly decreased by (a) soluble factor(s) secreted by DHD/PROb, an invasive sub-clone of a rat colon-carcinoma cell line. In this study, the DHD/PROb cell-derived NO-inhibitory factor was characterized. Northern-blot analysis demonstrated that the induction of iNOS mRNA in cytokine-activated EC219 cells was decreased by PROb-cell-conditioned medium. When DHD/PROb cell supernatant was fractionated by affinity chromatography using Con A-Sepharose or heparin-Sepharose, the NO-inhibitory activity was found only in Con A-unbound or heparin-unbound fractions, respectively, indicating that the PROb-derived inhibitory factor was likely to be a non-glycosylated and non-heparin-binding molecule. Pre-incubation of DHD/PROb-cell supernatant with anti-TGF-beta neutralizing antibody completely blocked the DHD/PROb-derived inhibition of NO production by EC219 cells. Addition of exogenous TGF-beta 1 dose-dependently inhibited NO release by EC219 cells. The presence of active TGF-beta in the DHD/PROb cell supernatant was demonstrated using a growth-inhibition assay. Moreover, heat treatment of medium conditioned by the less invasive DHD/REGb cells, which constitutively secreted very low levels of active TGF-beta, increased both TGF-beta activity and the ability to inhibit NO production in EC219 cells. Thus, DHD/PROb colon-carcinoma cells inhibited NO production in EC219 cells by secreting a factor identical or very similar to TGF-beta.
Resumo:
We had described that epidermal growth factor (EGF) interfered with the lipolytic effect of catecholamines in isolated adipocytes. Since catecholamines stimulate the release of EGF from submandibular salivary glands to blood plasma in male mice, we studied whether EGF affected also the lipolytic response to adrenaline in whole animals. We studied the effect of adrenaline in sialoadenectomized and sham-operated mice receiving or not a high dose of EGF following adrenaline injection. There was no difference in plasma EGF concentration between sham-operated and sialoadenectomized animals receiving saline. After adrenaline administration plasma EGF increased by 20-fold in sham-operated but did not increase in sialoadenectomized mice. Indeed, the increase was much higher (more than 100-fold) in mice receiving exogenous EGF. The effect of adrenaline on plasma concentration of both glycerol and nonesterified fatty acids was higher as lower was plasma EGF concentration. Isolated adipocytes obtained from sham-operated or sialoadenectomized mice had identical lipolytic response to adrenaline. The lipolytic response of adipocytes to isoproterenol was decreased by addition of EGF. To study whether the interference with the in vivo lipolytic effect of adrenaline had further metabolic consequences, we measured plasma b-hydroxybutyrate concentration in plasma. There was no difference in the response to adrenaline between sham-operated and sialoadenectomized mice in spite of the difference in plasma nonsterified fatty acid concentration. Studies in isolated hepatocytes indicated that ketogenesis run at near maximal rate in this range of substrate concentration. These results suggest that EGF in the physiological range decreases the lipolytic effect of adrenaline but does not compromise further metabolic events like the enhancement of ketogenesis.