983 resultados para bismuth titanate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead free magneto electrics with a strong sub resonant (broad frequency range) magneto electric coupling coefficient (MECC) is the goal of the day which can revolutionise the microelectronics and microelectromechanical systems (MEMS) industry. We report giant resonant MECC in lead free nanograined Barium Titanate–CoFe (Alloy)-Barium Titanate [BTO-CoFe-BTO] sandwiched thin films. The resonant MECC values obtained here are the highest values recorded in thin films/ multilayers. Sub-resonant MECC values are quite comparable to the highest MECC reported in 2-2 layered structures. MECC got enhanced by two orders at a low frequency resonance. The results show the potential of these thin films for transducer, magnetic field assisted energy harvesters, switching devices, and storage applications. Some possible device integration techniques are also discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetism and magnetic materials have been playing a lead role in improving the quality of life. They are increasingly being used in a wide variety of applications ranging from compasses to modern technological devices. Metallic glasses occupy an important position among magnetic materials. They assume importance both from a scientific and an application point of view since they represent an amorphous form of condensed matter with significant deviation from thermodynamic equilibrium. Metallic glasses having good soft magnetic properties are widely used in tape recorder heads, cores of high-power transformers and metallic shields. Superconducting metallic glasses are being used to produce high magnetic fields and magnetic levitation effect. Upon heat treatment, they undergo structural relaxation leading to subtle rearrangements of constituent atoms. This leads to densification of amorphous phase and subsequent nanocrystallisation. The short-range structural relaxation phenomenon gives rise to significant variations in physical, mechanical and magnetic properties. Magnetic amorphous alloys of Co-Fe exhibit excellent soft magnetic properties which make them promising candidates for applications as transformer cores, sensors, and actuators. With the advent of microminiaturization and nanotechnology, thin film forms of these alloys are sought after for soft under layers for perpendicular recording media. The thin film forms of these alloys can also be used for fabrication of magnetic micro electro mechanical systems (magnetic MEMS). In bulk, they are drawn in the form of ribbons, often by melt spinning. The main constituents of these alloys are Co, Fe, Ni, Si, Mo and B. Mo acts as the grain growth inhibitor and Si and B facilitate the amorphous nature in the alloy structure. The ferromagnetic phases such as Co-Fe and Fe-Ni in the alloy composition determine the soft magnetic properties. The grain correlation length, a measure of the grain size, often determines the soft magnetic properties of these alloys. Amorphous alloys could be restructured in to their nanocrystalline counterparts by different techniques. The structure of nanocrystalline material consists of nanosized ferromagnetic crystallites embedded in an amorphous matrix. When the amorphous phase is ferromagnetic, they facilitate exchange coupling between nanocrystallites. This exchange coupling results in the vanishing of magnetocrystalline anisotropy which improves the soft magnetic properties. From a fundamental perspective, exchange correlation length and grain size are the deciding factors that determine the magnetic properties of these nanocrystalline materials. In thin films, surfaces and interfaces predominantly decides the bulk property and hence tailoring the surface roughness and morphology of the film could result in modified magnetic properties. Surface modifications can be achieved by thermal annealing at various temperatures. Ion irradiation is an alternative tool to modify the surface/structural properties. The surface evolution of a thin film under swift heavy ion (SHI) irradiation is an outcome of different competing mechanism. It could be sputtering induced by SHI followed by surface roughening process and the material transport induced smoothening process. The impingement of ions with different fluence on the alloy is bound to produce systematic microstructural changes and this could effectively be used for tailoring magnetic parameters namely coercivity, saturation magnetization, magnetic permeability and remanence of these materials. Swift heavy ion irradiation is a novel and an ingenious tool for surface modification which eventually will lead to changes in the bulk as well as surface magnetic property. SHI has been widely used as a method for the creation of latent tracks in thin films. The bombardment of SHI modifies the surfaces or interfaces or creates defects, which induces strain in the film. These changes will have profound influence on the magnetic anisotropy and the magnetisation of the specimen. Thus inducing structural and morphological changes by thermal annealing and swift heavy ion irradiation, which in turn induce changes in the magnetic properties of these alloys, is one of the motivation of this study. Multiferroic and magneto-electrics is a class of functional materials with wide application potential and are of great interest to material scientists and engineers. Magnetoelectric materials combine both magnetic as well as ferroelectric properties in a single specimen. The dielectric properties of such materials can be controlled by the application of an external magnetic field and the magnetic properties by an electric field. Composites with magnetic and piezo/ferroelectric individual phases are found to have strong magnetoelectric (ME) response at room temperature and hence are preferred to single phasic multiferroic materials. Currently research in this class of materials is towards optimization of the ME coupling by tailoring the piezoelectric and magnetostrictive properties of the two individual components of ME composites. The magnetoelectric coupling constant (MECC) (_ ME) is the parameter that decides the extent of interdependence of magnetic and electric response of the composite structure. Extensive investigates have been carried out in bulk composites possessing on giant ME coupling. These materials are fabricated by either gluing the individual components to each other or mixing the magnetic material to a piezoelectric matrix. The most extensively investigated material combinations are Lead Zirconate Titanate (PZT) or Lead Magnesium Niobate-Lead Titanate (PMNPT) as the piezoelectric, and Terfenol-D as the magnetostrictive phase and the coupling is measured in different configurations like transverse, longitudinal and inplane longitudinal. Fabrication of a lead free multiferroic composite with a strong ME response is the need of the hour from a device application point of view. The multilayer structure is expected to be far superior to bulk composites in terms of ME coupling since the piezoelectric (PE) layer can easily be poled electrically to enhance the piezoelectricity and hence the ME effect. The giant magnetostriction reported in the Co-Fe thin films makes it an ideal candidate for the ferromagnetic component and BaTiO3 which is a well known ferroelectric material with improved piezoelectric properties as the ferroelectric component. The multilayer structure of BaTiO3- CoFe- BaTiO3 is an ideal system to understand the underlying fundamental physics behind the ME coupling mechanism. Giant magnetoelectric coupling coefficient is anticipated for these multilayer structures of BaTiO3-CoFe-BaTiO3. This makes it an ideal candidate for cantilever applications in magnetic MEMS/NEMS devices. SrTiO3 is an incipient ferroelectric material which is paraelectric up to 0K in its pure unstressed form. Recently few studies showed that ferroelectricity can be induced by application of stress or by chemical / isotopic substitution. The search for room temperature magnetoelectric coupling in SrTiO3-CoFe-SrTiO3 multilayer structures is of fundamental interest. Yet another motivation of the present work is to fabricate multilayer structures consisting of CoFe/ BaTiO3 and CoFe/ SrTiO3 for possible giant ME coupling coefficient (MECC) values. These are lead free and hence promising candidates for MEMS applications. The elucidation of mechanism for the giant MECC also will be the part of the objective of this investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present thesis is a contribution to the study of laser-solid interaction. Despite the numerous applications resulting from the recent use of laser technology, there is still a lack of satisfactory answers to theoretical questions regarding the mechanism leading to the structural changes induced by femtosecond lasers in materials. We provide here theoretical approaches for the description of the structural response of different solids (cerium, samarium sulfide, bismuth and germanium) to femtosecond laser excitation. Particular interest is given to the description of the effects of the laser pulse on the electronic systems and changes of the potential energy surface for the ions. Although the general approach of laser-excited solids remains the same, the potential energy surface which drives the structural changes is calculated with different theoretical models for each material. This is due to the difference of the electronic properties of the studied systems. We use the Falicov model combined with an hydrodynamic method to study photoinduced phase changes in cerium. The local density approximation (LDA) together with the Hubbard-type Hamiltonian (LDA+U) in the framework of density functional theory (DFT) is used to describe the structural properties of samarium sulfide. We parametrize the time-dependent potential energy surface (calculated using DFT+ LDA) of bismuth on which we perform quantum dynamical simulations to study the experimentally observed amplitude collapse and revival of coherent $A_{1g}$ phonons. On the basis of a time-dependent potential energy surface calculated from a non-orthogonal tight binding Hamiltonian, we perform molecular dynamics simulation to analyze the time evolution (coherent phonons, ultrafast nonthermal melting) of germanium under laser excitation. The thermodynamic equilibrium properties of germanium are also reported. With the obtained results we are able to give many clarifications and interpretations of experimental results and also make predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report describes development of micro-fabricated piezoelectric ultrasonic motors and bulk-ceramic piezoelectric ultrasonic motors. Ultrasonic motors offer the advantage of low speed, high torque operation without the need for gears. They can be made compact and lightweight and provide a holding torque in the absence of applied power, due to the traveling wave frictional coupling mechanism between the rotor and the stator. This report covers modeling, simulation, fabrication and testing of ultrasonic motors. Design of experiments methods were also utilized to find optimal motor parameters. A suite of 8 mm diameter x 3 mm tall motors were machined for these studies and maximum stall torques as large as 10^(- 3) Nm, maximum no-load speeds of 1710 rpm and peak power outputs of 27 mW were realized. Aditionally, this report describes the implementation of a microfabricated ultrasonic motor using thin-film lead zirconate titanate. In a joint project with the Pennsylvania State University Materials Research Laboratory and MIT Lincoln Laboratory, 2 mm and 5 mm diameter stator structures were fabricated on 1 micron thick silicon nitride membranes. Small glass lenses placed down on top spun at 100-300 rpm with 4 V excitation at 90 kHz. The large power densities and stall torques of these piezoelectric ultrasonic motors offer tremendous promis for integrated machines: complete intelligent, electro-mechanical autonomous systems mass-produced in a single fabrication process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCCIÓN: El trasplante hepático ha permitido mejorar la calidad de vida y la supervivencia de los pacientes con cirrosis, se ha identificado un gran espectro de complicaciones crónicas, dentro de las cuales la Diabetes Mellitus de nuevo inicio posterior al trasplante (DMNPT) hace parte y genera un impacto significativo con relación a morbimortalidad. Nuestro objetivo fue determinar los factores asociados para el desarrollo de DMNPT. METODOLOGÍA: Se llevó a cabo un estudio de casos y controles sobre una cohorte histórica donde se revisaron pacientes colombianos postrasplante hepático y se evaluaron factores clínicos asociados con el inicio de DMNPT. RESULTADOS: Se encontró que la incidencia de DMNPT en nuestra población fue de 14.3% (32/224), con una mediana de aparición desde el procedimiento hasta el diagnóstico de 10 meses (IQR 1 - 40). De los 32 casos el 62.5% (20/32) fueron hombres, con una mediana de edad de 55.5 años. La presencia de encefalopatía (ORA 3,55 IC 95% 1.07-8.2), intolerancia a los carbohidratos (ORA 2,97 IC 95% 1.35-9.32) y el tiempo de isquemia (ORA 1.005 IC 95% 1.001 – 1.01) fueron significativamente asociados con el desenlace, en contraste la etiología autoinmune de la cirrosis se comportó como un factor protector (OR 0.34 IC 95% 0.12-091). CONCLUSIÓN: A pesar de las limitaciones del estudio, hay consistencia con resultados previos con respecto a la asociación entre estas variables independientes y el desarrollo de DMNPT, características que se deben tener en cuenta en el seguimiento de este grupo de pacientes estableciendo estrategias de seguimiento rigurosas y terapéuticas tempranas con miras a disminuir el riesgo de progresión a DM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the (001) surface structure of lithium titanate (Li2TiO3) using auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and scanning tunneling microscopy (STM). Li2TiO3 is a potential fusion reactor blanket material. After annealing at 1200 K, LEED demonstrated that the Li2TiO3(001) surface was well ordered and not reconstructed. STM imaging showed that terraces are separated in height by about 0.3 nm suggesting a single termination layer. Moreover, hexagonal patterns with a periodicity of ∼0.4 nm are observed. On the basis of molecular dynamics (MD) simulations, these are interpreted as a dynamic arrangement of Li atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the underlying mechanisms that suppress thermal conduction in solids is of paramount importance for the targeted design of materials for thermal management and thermoelectric energy conversion applications. Bismuth copper oxychalcogenides, BiOCuQ (Q = Se, Te), are highly crystalline thermoelectric materials with an unusually low lattice thermal conductivity of approx. 0.5 Wm-1K-1, a value normally found in amorphous materials. Here we unveil the origin of the unusual thermal transport properties of these phases. First principles calculations of the vibrational properties combined with analysis of in-situ neutron diffraction data, demonstrate that weak bonding of copper atoms within the structure leads to an unexpected vibrational mode at low frequencies, which is likely to be a major contributor to the low thermal conductivity of these materials. In addition, we show that anharmonicity and the large Grüneisen parameter in these oxychalcogenides are mainly related to the low frequency copper vibrations, rather than to the Bi3+ lone pairs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead calcium titanate (Pb(1-x)Ca(x)TiO(3) or PCT) thin films have been thermally treated under different oxygen pressures, 10, 40 and 80 bar, by using the so-called chemical solution deposition method. The structural, morphological, dielectric and ferroelectric properties were characterized by x-ray diffraction, FT-infrared and Raman spectroscopy, atomic force microscopy and polarization-electric-field hysteresis loop measurements. By annealing at a controlled pressure of around 10 and 40 bar, well-crystallized PCT thin films were successfully prepared. For the sample submitted to 80 bar, the x-ray diffraction, Fourier transformed-infrared and Raman data indicated deviation from the tetragonal symmetry. The most interesting feature in the Raman spectra is the occurrence of intense vibrational modes at frequencies of around 747 and 820 cm(-1), whose presence depends strongly on the amount of the pyrochlore phase. In addition, the Raman spectrum indicates the presence of symmetry-breaking disorder, which would be expected for an amorphous (disorder) and mixed pyrochlore-perovskite phase. During the high-pressure annealing process, the crystallinity and the grain size of the annealed film decreased. This process effectively suppressed both the dielectric and ferroelectric behaviour. Ferroelectric hysteresis loop measurements performed on these PCT films exhibited a clear decrease in the remanent polarization with increasing oxygen pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The temperature dependence of the crystalline structure and the lattice parameters of Pb1-xLaxZr0.40Ti0.60O3 ferroelectric ceramic system with 0.00 x 0.21 was determined. The samples with x 0.11 show a cubic-to-tetragonal phase transition at the maximum dielectric permittivity, Tmax. Above this amount and especially for the x = 0.12 sample, a spontaneous phase transition from a relaxor ferroelectric state (cubic phase) to a ferroelectric state (tetragonal phase) is observed upon cooling below the Tmax. Unlike what has been reported in other studies, the x = 0.13, 0.14, and 0.15 samples, which present a more pronounced relaxor behavior, also presents a spontaneous normal-to-relaxor transition, indicated by a cubic to tetragonal symmetry below the Tmax. The origin of this anomaly has been associated with an increase in the degree of tetragonality, confirmed by the measurements of the X-ray diffraction patterns. The differential thermal analysis (DSC) measurements also confirm the existence of these phase transitions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time, nanograined Pb(1-1.5x)La(x)TiO(3) ferroelectric ceramics, with x=0.2, were produced by a process based on a high-pressure densification technique (HPD) that eliminates the need of high-temperature sintering. Our results showed the production of workable dense ceramics with average grain size around 100 nm and free from secondary phase. Regarding the dielectric measurements, the samples showed satisfactory dielectric losses as well as remarkable diffusivity in the dielectric curves. Moreover, ferroelectric hysteresis measurements showed that samples produced by the HPD technique can stand high electric fields necessary to switch the polarization and thus to induce piezoelectric activity. Our results demonstrated clearly the viability of the proposed method to produce nanograined ferroelectric bulk ceramics, then opening the possibility of developing new technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed investigation was made into the origin of photoluminescence in an alternate multilayer system of SrZrO(3) (SZO) and SrTiO(3) (STO) thin films. XRD and room-temperature PL studies revealed a high consistency with respect to improved crystallization at elevated temperatures. The photoluminescence behaviour of SZO/STO multilayered system consists in the superposition of independent photoluminescence emissions of both STO and SZO films. Based on the present results and on previous experimental and theoretical data, we propose that the origin of the photoluminescence emission results from structural disorder generated by the presence of distortions in the ideal constituent clusters of these materials. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The (micro)structural and electrical properties of undoped and Er(3+)-doped BaTi(0.85)Zr(0.15)O(3) ceramics were studied in this work for both nominal Ba(2+) and Ti(4+) substitution formulations. The ceramics were produced from solid-state reaction and sintered at 1400 degrees C for 3 h. For those materials prepared following the donor-type nominal Ba(1-x)Er(x)(Ti(0.85)Zr(0.15))O(3) composition, especially, Er(3+) however showed a preferential substitution for the (Ti,Zr)(4+) lattice sites. This allowed synthesis of a finally acceptor-like, highly resistive Ba(Ti,Zr,Er)O(3-delta)-like system, with a solubility limit below but close to 3 cat.% Er(3+). The overall phase development is discussed in terms of the amphoteric nature of Er(3+), and appears to mainly or, at least, partially also involve a minimization of stress effects from the ion size mismatch between the dopant and host cations. Further results presented here include a comparative analysis of the behavior of the materials` grain size, electrical properties and nature of the ferroelectric-to-paraelectric phase transition upon variation of the formulation and Er(3+) content. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the production of bismuth germanate ceramic scintillator (Bi4Ge3O12) by combustion synthesis (SHS) method, focusing on the influence of the synthesis parameters on the crystalline phases and agglomeration of the nanoparticles. The synthesis and sintering conditions were investigated through thermal analysis, X-ray diffraction as function of temperature, dilatometry and scanning electron microscopy. Well-dispersed Bi4Ge3O12 powder was accomplished by the combustion of the initial solution at pH 9, followed by low temperature calcination and milling. Sintered ceramics presented relative density of 98% and single crystalline Bi4Ge3O12 phase. The luminescent properties of the ceramics were investigated by photo- and radio- luminescence measurements and reproduced the typical Bi4Ge3O12 single-crystal spectra when excited with UV, beta and X-rays. The sintered ceramics presented light output of 4.4 x 10(3) photons/McV. (c) 2008 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the present work is to report studies on structural phase transition for PMN-xPT ferroelectric, with melt PbTiO3 composition around the MPB (x = 0.35 mol %), using infrared spectroscopy technique. The study was centered on monitoring the behavior of the 1-(NbO), 1-(TiO) and 1-(MgO) stretching modes as a function of temperature. The increasing as a function of temperature for 1-(TiO) and 1-(MgO) modes, observed between 230 and 300 K, can be related to the monoclinic (MC) + tetragonal (T) phase coexistence in the PMN-PT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dielectric properties of BaTiO(3) ferroelectric ceramics were studied over wide frequency and temperature ranges. The materials showed complex dielectric behaviors, which included an anomalous increase of permittivity towards higher temperatures. Important, this property tended however to saturate to values that varied with grain-boundary density. Application of impedance spectroscopy and consideration of the series-layer model allowed a coherent discussion of these and other interesting observations from this work. In particular, analysis of the relationship existing in this model between macroscopic and microscopic dielectric properties rendered possible to account for grain vs. grain-boundary dielectric behaviors, in harmony with microstructure features, and to know the dielectric anomaly strength to be in fact expected from grain boundaries in such polycrystalline materials. (C) 2010 Elsevier Ltd. All rights reserved.