890 resultados para bending automat
Resumo:
In this work, the plate bending formulation of the boundary element method (BEM) based on the Reissner's hypothesis is extended to the analysis of zoned plates in order to model a building floor structure. In the proposed formulation each sub-region defines a beam or a slab and depending on the way the sub-regions are represented, one can have two different types of analysis. In the simple bending problem all sub-regions are defined by their middle surface. on the other hand, for the coupled stretching-bending problem all sub-regions are referred to a chosen reference surface, therefore eccentricity effects are taken into account. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. The bending and stretching values defined on the interfaces are approximated along the beam width, reducing therefore the number of degrees of freedom. Then, in the proposed model the set of equations is written in terms of the problem values on the beam axis and on the external boundary without beams. Finally some numerical examples are presented to show the accuracy of the proposed model.
Resumo:
This paper describes a technique for extending the force range of thin conductive polymer force sensors used for measuring contact force. These sensors are conventionally used for measuring force by changing electrical resistance when they are compressed. The new method involves measuring change in electrical resistance when the flexible sensor, which is sensitive to both compression and bending, is sandwiched between two layers of spring steel, and the structure is supported on a thin metal ring. When external force is applied, the stiffened sensor inside the spring steel is deformed within the annular center of the ring, causing the sensor to bend in proportion to the applied force. This method effectively increases the usable force range, while adding little in the way of thickness and weight. Average error for loads between 10 N and 100 N was 2.2 N (SD = 1.7) for a conventional conductive polymer sensor, and 0.9 N (SD = 0.4) using the new approach. Although this method permits measurement of greater loads with an error less than 1 N, it is limited since the modified sensor is insensitive to loads less than 5 N. These modified sensors are nevertheless useful for directly measuring normal force applied against handles and tools and other situations involving forceful manual work activities, such as grasp, push, pull, or press that could not otherwise be measured in actual work situations.
Resumo:
In this study, fibre-reinforced self-compacting concretes were developed for precast building components, incorporating either adherent metal fibres or polymeric synthetic slipping fibres or a combination of both. To achieve the warranted workability, compressive and splitting tensile strengths, compositions were determined by preliminary tests on self-compacting materials with various proportions of metal fibres. Bending tests in controlled deflection confirmed the positive contribution of fibres in the mechanical behaviour of self-compacting concrete. The comparison between vibrated and self-compacting concretes of similar mechanical characteristics indicated a possible better fibre-matrix bond in the case of self-compacting types. The results also showed that the properties of the hybrid fibre-reinforced self-compacting concrete could be inferred from the properties of the individual single-fibre reinforcements and their respective proportions through simple mix-rules.
Resumo:
In this work, a numerical model to perform non-linear analysis of building floor structures is proposed. The presented model is derived from the Kirchhoff-s plate bending formulation of the boundary element method (BENI) for zoned domains, in which the plate stiffness is modified by the presence of membrane effects. In this model, no approximation of the generalized forces along the interface is required and the compatibility and equilibrium conditions along interfaces are imposed at the integral equation level. In order to reduce the number of degrees of freedom, the Navier Bernoulli hypothesis is assumed to simplify the strain field for the thin sub-regions (rectangular beams). The non-linear formulation is obtained from the linear formulation by incorporating initial internal force fields, which are approximated by using the well-known cell sub-division. Then, the non-linear solution of algebraic equations is obtained by using the concept of the consistent tangent operator. The Von Mises criterion is adopted to govern the elasto-plastic material behaviour checked at points along the plate thickness and along the rectangular beam element axes. The numerical representations are accurately obtained by either computing analytically the element integrals or performing the numerical integration accurately using an appropriate sub-elementation scheme. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work is to present a formulation of the boundary element method to analyse elastic and isotropic plates with curved boundaries. In this study the plate boundary is approximated, along each element, by a second degree polynomial relation or by a circular arch, in order to better represent the real boundary. The numerical integration is performed by the self-adaptive coordinate transformation proposed by Telles. The effective shear forces are approximated by concentrated reactions applied at the boundary element nodes, according to the alternative formulation introduced by Paiva. Some examples are presented to demonstrate the better accuracy obtained with the proposed elements.
Resumo:
Application of high temperature superconductor Bi2Sr2Ca2Cu3Ox. (Bi-2223) compound embedded in an Ag matrix requires the knowledge of critical current as a function of mechanical properties. Commercial tapes available in different types have been developed in industrial production scale in which a combination of small diameter filaments, long tape lengths and a ductile matrix results in a conductor with low crack formation and good tolerance against strain. The measurement of critical current and the evaluation of n-index from V-I characteristic curves of Bi-2223/Ag composite tapes subjected to an initial bending strain as a function of number of thermal cycles were done for two types of Bi-2223/Ag composite tapes: with and without steel tape reinforcement. The results showed that tapes with reinforcement presented small critical current degradation as a function of the number of thermal cycles whereas tapes without reinforcement exhibited steadily critical current degradation caused by the propagation of cracks. The n-index followed the same critical current behavior.
Resumo:
Objectives. Evaluate the flexural strength (sigma) and subcritical crack growth (SCG) under cyclic loading of glass-infiltrated alumina-based (IA, In-Ceram Alumina) and zirconia-reinforced (IZ, In-Ceram Zirconia) ceramics, testing the hypothesis that wet environment influences the SCG of both ceramics when submitted to cyclic loading.Methods. Bar-shaped specimens of IA (n = 45) and IZ ( n = 45) were fabricated and loaded in three-point bending (3P) in 37 degrees C artificial saliva (IA(3P) and IZ(3P)) and cyclic fatigued (F) in dry (D) and wet (W) conditions (IA(FD), IA(FW), IZ(FD), IZ(FW)). The initial sigma and the number of cycles to fracture were obtained from 3P and F tests, respectively. Data was examined using Weibull statistics. The SCG behavior was described in terms of crack velocity as a function of maximum stress intensity factor (K(Imax)).Results. The Weibull moduli (m = 8) were similar for both ceramics. The characteristic strength (sigma(0)) of IA and IZ was and 466 MPa 550 MPa, respectively. The wet environment significantly increased the SCG of IZ, whereas a less evident effect was observed for IA. In general, both ceramics were prone to SCG, with crack propagation occurring at K(I) as low as 43-48% of their critical K(I). The highest sigma of IZ should lead to longer lifetimes for similar loading conditions.Significance. Water combined with cyclic loading causes pronounced SCG in IZ and IA materials. The lifetime of dental restorations based on these ceramics is expected to increase by reducing their direct exposure to wet conditions and/or by using high content zirconia ceramics with higher strength. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this paper was evaluated, using the software ANSYS, the stiffness (El) of the log-concrete composite beams, of section T, with connectors formed by bonded-in steel rods, type CA-50, disposed in X, with application of cyclical load. The stiffness of the system was evaluated through the simulation of bending tests, considered 1/2 beam, with cyclical shipment varying among 40 % and 5 % of the strength of the connection with the load relationship R=0,125, for a total of 10 load cycles applied. The numeric results show a good agreement with experimental tests.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Wind-excited vibrations in the frequency range of 10 to 50 Hz due to vortex shedding often cause fatigue failures in the cables of overhead transmission lines. Damping devices, such as the Stockbridge dampers, have been in use for a long time for supressing these vibrations. The dampers are conveniently modelled by means of their driving point impedance, measured in the lab over the frequency range under consideration. The cables can be modelled as strings with additional small bending stiffness. The main problem in modelling the vibrations does however lay in the aerodynamic forces, which usually are approximated by the forces acting on a rigid cylinder in planar flow. In the present paper, the wind forces are represented by stochastic processes with arbitrary crosscorrelation in space; the case of a Kármán vortex street on a rigid cylinder in planar flow is contained as a limit case in this approach. The authors believe that this new view of the problem may yield useful results, particularly also concerning the reliability of the lines and the probability of fatigue damages. © 1987.
Resumo:
The subject of this work was to study a hardening procedure for gutta-percha points, in order to make ease their introduction in very curved root canals. Gutta-percha points of different brands and dimensions were submitted to treatment with alcohol 96 degrees for 1 to 3 days. After this treatment the weight necessary to make a bending of 35 degrees on the tip of the gutta-percha was evaluated. The obtained results were submitted to statistic analysis and the following conclusions can be observed: a. The treatment with alcohol make hard the gutta-percha points in a significant level. b. There was not significant differences between the results obtained with more than one day of alcohol treatment. c. The treatment with alcohol do not make hard all the brands of gutta-percha points.
Resumo:
A prestressed concrete monoblock railroad tie was designed to attend the characteristics of a Brazilian railroad track with 1,600 mm gauge and 320 kN axle load. Concrete ties specimens were manufactured without and with steel fibers in a volume fraction of 60 kg/m3 (0.76 % by volume), and three different initial prestress forces. Static and fatigue tests were carried out on the ties. Static tests showed that steel fibers increase the first crack and ultimate bending moments, increase significantly the slip force of the prestressing tendons, reduce crack width, add higher ductility to the ties and decrease the stress in the prestressing tendons. Under dynamic loading the steel fibers decreased the stress in the prestressing tendons by about 50%, which improved significantly the fatigue strength of the tie. A tie without fibers failed after only 150,000 cycles. However, a similar tie, with fibers, resisted 3,000,000 cycles without suffering fatigue failure.
Resumo:
This papers presents results on the variation of the PMD coefficient of optical links under influence of mechanical tests, such as tensile strength, bending and compression, and also during the application of a thermal cycle. Results revealed that the link coefficient is more influenced by the application of a tension load and also suffers significant variation under strong temperature changes. Copyrigth © SBMO.
Resumo:
This study investigated the flexural strength of eight fiber posts (one carbon fiber, one carbon/quartz fiber, one opaque quartz fiber, two translucent quartz fiber, and three glass fiber posts). Eighty fiber posts were used and divided into eight groups (n = 10): G1: C-POST (Bisco); G2: ÆSTHETI-POST (Bisco); G3: ÆSTHETI-PLUS (Bisco); G4: LIGHT-POST (Bisco); G5: D.T. LIGHT-POST (Bisco); G6: PARAPOST WHITE (Coltene); G7: FIBERKOR (Pentron); G8: REFORPOST (Angelus). All of the samples were tested using the three-point bending test. The averages obtained were submitted to the ANOVA and to Tukey's test (p < 0.05). The mean values (MPa) of the groups ÆSTHETI-POST - carbon/ quartz fiber post (Bisco) and ÆSTHETI-PLUS - quartz fiber post (Bisco) were statistically similar and higher than the mean values of the other groups. The mean values of the groups C-POST - carbon fiber post (Bisco), LIGHT-POST - translucent quartz fiber post (Bisco), D.T. LIGHT-POST - double tapered translucent quartz fiber post (Bisco), PARAPOST WHITE - glass fiber post (Coltene) and FIBREKOR - glass fiber post (Pentron) were similar and higher than the group REFORPOST - glass fiber post (Angelus). Copyright © 2005 by the American Association of Endodontists.
Resumo:
The compaction rate, the relation between the density of the wood panel and the density of the wood used for producing the particles, is an indicator of the product's densification. Among the various types of wood panels, particleboards are widely employed in the lumber industry, mainly for the furniture production. This paper presents a study of the relation between the compaction rate and the properties of tensile strength perpendicular to surface, Modulus of Rupture (MOR) and Modulus of Elasticity (MOE) obtained from a static bending test, thickness swelling and water absorption (2 and 24 hours). These properties were calculated according to the Brazilian ABNT, NBR 14810 standard. Particleboards were produced using the species Pinus elliotti and adhesive ureaformaldehyde. The relation was established by a multiple linear regression, and the most appropriate statistical models were determined. The estimated models indicate statistically significant effects of water absorption in 2 hours and MOR in the particleboards' compaction rate.