985 resultados para balanço energia e nitrogênio
Resumo:
The use of biofuels remotes to the eighteenth century, when Rudolf Diesel made the first trials using peanut oil as fuel in a compression ignition engine. Based on these trials, there was the need for some chemical change to vegetable oil. Among these chemical transformations, we can mention the cracking and transesterification. This work aims at conducting a study using the thermocatalytic and thermal cracking of sunflower oil, using the Al-MCM-41 catalyst. The material type mesoporous Al-MCM-41 was synthesized and characterized by Hydrothermical methods of X-ray diffraction, scanning electron microscopy, nitrogen adsorption, absorption spectroscopy in the infrared and thermal gravimetric analysis (TG / DTG).The study was conducted on the thermogravimetric behavior of sunflower oil on the mesoporous catalyst cited. Activation energy, conversion, and oil degradation as a function of temperature were estimated based on the integral curves of thermogravimetric analysis and the kinetic method of Vyazovkin. The mesoporous material Al-MCM-41 showed one-dimensional hexagonal formation. The study of the kinetic behavior of sunflower oil with the catalyst showed a lower activation energy against the activation energy of pure sunflower oil. Two liquid fractions of sunflower oil were obtained, both in thermal and thermocatalytic pyrolisis. The first fraction obtained was called bio-oil and the second fraction obtained was called acid fraction. The acid fraction collected, in thermal and thermocatalytic pyrolisis, showed very high level of acidity, which is why it was called acid fraction. The first fraction was collected bio-called because it presented results in the range similar to petroleum diesel
Resumo:
In this study, was used a very promising technique called of pyrolysis, which can be used for obtaining products with higher added value. From oils and residues, since the contribution of heavier oils and residues has intensified to the world refining industry, due to the growing demand for fuel, for example, liquid hydrocarbons in the range of gasoline and diesel. The catalytic pyrolysis of vacuum residues was performed with the use of a mesoporous material belonging the M41S family, which was discovered in the early 90s by researchers Mobil Oil Corporation, allowing new perspectives in the field of catalysis. One of the most important members of this family is the MCM-41, which has a hexagonal arrangement of mesopores with pore diameters between 2 and 10 nm and a high specific surface area, making it very promising for use as a catalyst in petroleum refining for catalytic cracking, and their mesopores facilitate the access of large hydrocarbon molecules. The addition of aluminum in the structure of MCM-41 increases the acidity of the material, making it more positive for application in the petrochemical industry. The mesoporous material of the type Al-MCM41 (ratio Si / Al = 50) was synthesized by hydrothermal method starting from the silica gel, NaOH and distilled water added to the gel pseudobohemita synthesis. Driver was used as structural CTMABr. Removal of organic driver (CTMABr) was observed by TG / DTG and FTIR, but this material was characterized by XRD, which was observed the formation of the main peaks characteristic of mesoporous materials. The analysis of adsorption / desorption of nitrogen this material textural parameters were determined. The vacuum residues (VR's) that are products of the bottom of the vacuum distillation tower used in this study are different from oil fields (regions of Ceará and Rio de Janeiro). Previously characterized by various techniques such as FTIR, viscosity, density, SARA, elemental analysis and thermogravimetry, which was performed by thermal and catalytic degradation of vacuum residues. The effect of AlMCM-41 was satisfactory, since promoted a decrease in certain ranges of temperature required in the process of conversion of hydrocarbons, but also promoted a decrease in energy required in the process. Thus enabling lower costs related to energy expenditure from degradation during processing of the waste
Resumo:
The worldwide concern regarding the use of sustainable energy and preserving the environment are determining factors in the search for resources and alternative sources of energy and therefore fuel less aggressive nature. In response to these difficulties Biodiesel has emerged as a good solution because it is produced from renewable sources, produces burns cleaner and is easily reproducible. This work was synthesized with biodiesel oil, sunflower via homogeneous catalysis in the presence of KOH, with and without the use of BHT and subsequently added to the blends BX (a proportion of biodiesel X = 5, 10, 15 and 20 %). Atmospheric distillation of the analysis, performed in blends with and without BHT were collected residue generated by each sample and performed a study heat from the thermogravimetric analysis at a heating rate of 10 °C*min-1, nitrogen atmosphere and heating to 600 °C. According to the specifications of Resolution N 7/2008 for biodiesel, it was found that the synthesized material was in accordance with the specifications. For blends showed that the samples are in accordance with the Resolution of ANP N 42/2009. From the TG / DTG curves of the samples of biodiesel, blends and waste can be seen that these show a single loss of thermal decomposition concerning constituents present in each sample. The blends without BHT with ratios of 5%, 10% and 15% biodiesel showed a lower amount of waste (1,07%; 1,09% e 1,10%) to mineral diesel (1,15%). Therefore, it is concluded that the addition of biodiesel with diesel mineral can improve some physico-chemical parameters, but also, depending on the added amount, decreasing the amount of waste generated. This fact is of great importance because the carbonaceous residue can cause problems in mechanical equipment and parts for vehicles, causing more frequent maintenance, and this is not desirable
Estudo térmico dos resíduos gerados da destilação atmosférica das misturas diesel/biodiesel de dendê
Resumo:
The growing world demand for energy supplied by fossil fuels, a major contributor to the emission of pollutants into the atmosphere and causing environmental problems, has been encouraging governments and international organizations to reflect and encourage the use of alternative renewable sources. Among these new possibilities deserves attention biodiesel, fuel cleaner and easy to reproduce. The study of new technologies involving that source is necessary. From this context, the paper aims at analyzing the thermal stability by thermogravimetric analysis, of the waste generated from atmospheric distillation of mixtures with ratios of 5, 10, 15 and 20% palm biodiesel in diesel with and without addition of BHT antioxidant. It was synthesized biodiesel through palm oil, via homogeneous catalysis in the presence of KOH, with and without the use of BHT and subsequently added to the diesel common indoor type (S1800) from a gas station BR. The diesel was already added with 5% biodiesel, and thus the proportions used for these blends were subtracted from the existing ratio in diesel fuel, resulting in the following proportions palm oil biodiesel: 0% (B5), 5% (B10), 10 % (B15) and 15% (B20). From atmospheric distillation analysis, performed in mixtures with and without BHT were collected residue generated by each sample and performed a thermal study from the thermogravimetric analysis at a heating rate of 10 °C.min-1, nitrogen atmosphere and heating to 600 ° C. According to the specifications of Resolution No. 7/2008 for biodiesel, it was found that the material was synthesized in accordance with the specifications. For mixtures, it was noted that the samples were in accordance with the ANP Resolution No. 42/2009. Given the TG / DTG curves of the samples of waste mixtures with and without BHT antioxidant was able to observe that they showed a single stage of thermal decomposition attributed to decomposition of heavy hydrocarbons and esters and other heavier constituents of the waste sample weighed. The thermal behavior of residues from atmospheric distillation of mixtures of diesel / biodiesel is very important to understand how this affects the proper functioning of the engine. A large amount of waste can generate a high content of particulate material, coke formation and carbonaceous deposits in engine valves, compromising their performance
Resumo:
The demand for alternative sources of energy drives the technological development so that many fuels and energy conversion processes before judged as inadequate or even non-viable, are now competing fuels and so-called traditional processes. Thus, biomass plays an important role and is considered one of the sources of renewable energy most important of our planet. Biomass accounts for 29.2% of all renewable energy sources. The share of biomass energy from Brazil in the OIE is 13.6%, well above the world average of participation. Various types of pyrolysis processes have been studied in recent years, highlighting the process of fast pyrolysis of biomass to obtain bio-oil. The continuous fast pyrolysis, the most investigated and improved are the fluidized bed and ablative, but is being studied and developed other types in order to obtain Bio-oil a better quality, higher productivity, lower energy consumption, increased stability and process reliability and lower production cost. The stability of the product bio-oil is fundamental to designing consumer devices such as burners, engines and turbines. This study was motivated to produce Bio-oil, through the conversion of plant biomass or the use of its industrial and agricultural waste, presenting an alternative proposal for thermochemical pyrolysis process, taking advantage of particle dynamics in the rotating bed that favors the right gas-solid contact and heat transfer and mass. The pyrolyser designed to operate in a continuous process, a feeder containing two stages, a divisive system of biomass integrated with a tab of coal fines and a system of condensing steam pyrolytic. The prototype has been tested with sawdust, using a complete experimental design on two levels to investigate the sensitivity of factors: the process temperature, gas flow drag and spin speed compared to the mass yield of bio-oil. The best result was obtained in the condition of 570 oC, 25 Hz and 200 cm3/min, temperature being the parameter of greatest significance. The mass balance of the elementary stages presented in the order of 20% and 37% liquid pyrolytic carbon. We determined the properties of liquid and solid products of pyrolysis as density, viscosity, pH, PCI, and the composition characterized by chemical analysis, revealing the composition and properties of a Bio-oil.
Resumo:
Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
O nitrogênio e potássio são os nutrientes requeridos em maiores quantidades pelas gramas e no Brasil não se tem informação da quantidade a ser aplicada para se obter a formação de tapete em menor tempo possível. Dois experimentos foram instalados em vasos em casa de vegetação, com o objetivo de avaliar o efeito de doses de nitrogênio e de potássio na produção de tapetes de grama esmeralda (Zoysia japonica). O delineamento utilizado para cada experimento foi fatorial com doses de N ou K e épocas de avaliação. Foram aplicadas quatro doses de nitrogênio (0, 200, 400 e 600 kg ha-1) e quatro doses de potássio (0, 100, 200, e 300 kg ha-1). As doses de nitrogênio e potássio foram aplicadas parceladamente em cobertura. O aumento das doses de N influenciou a taxa de cobertura do solo pela grama (TCS) permitindo a formação do tapete com a dose de 408 kg ha-1 de N aos 198 dias após a colheita do tapete anterior, tempo menor quando comparado com as demais doses. A concentração de N na folha e da cor verde da grama foram influenciadas pelas doses de N podendo ser utilizadas para auxiliar na recomendação das doses de N. O aumento das doses de K não influenciou na TCS pela grama, sendo o teor no solo (1,4 mmol c dm-3) suficiente para a produção dos tapetes de grama esmeralda.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo neste trabalho foi avaliar o desempenho de pacus (Piaractus mesopotamicus) criados em tanques-rede e alimentados com dietas contendo níveis de proteína bruta (PB) e energia digestível (ED). Foram utilizados 3.960 peixes com 293,38 ± 5,67 g de peso inicial, distribuídos em 18 tanques-rede de 5 m³, com 220 peixes por unidade experimental (44 peixes/m³), em esquema fatorial 3 × 2, composto de três níveis de proteína bruta (25, 30 e 35%) e dois de energia digestível (3.250 e 3.500 kcal/kg). O arraçoamento foi realizado quatro vezes ao dia (às 9 h, 11h30min, 14 h e 17 h) até a saciedade aparente dos animais. Não foram observadas diferenças no ganho de peso, na taxa de sobrevivência, na conversão alimentar aparente nem na taxa de crescimento específico. No entanto, houve diferença na deposição de gordura visceral, que foi maior nos animais alimentados com as rações de maior nível energético. Também não foi observada influência dos níveis de proteína e energia da dieta nos teores de umidade, proteína bruta, matéria mineral e lipídio dos filés. Rações contendo 25% de proteína bruta e 3.250 kcal/kg de energia digestível promovem melhores resultados de desempenho.
Desempenho zootécnico de girinos de rã-touro com diferentes níveis de proteína e energia digestíveis
Resumo:
A partir dos valores de digestibilidade de alguns ingredientes foram propostas dietas, com diferentes níveis de proteína e energia digestíveis, em esquema fatorial 3 x 3, destinadas a girinos de rã-touro para avaliar o desempenho zootécnico. O experimento, com duração de 60 dias, foi conduzido com 810 girinos, oriundos da mesma desova, distribuídos em 27 caixas de polipropileno, em uma densidade de 1girino/L. O delineamento experimental foi um esquema fatorial com três níveis de proteína digestível (27; 31 e 35%) e três níveis de energia digestível (2.700; 2.800 e 2.900kcal/kg) com três réplicas. Os parâmetros avaliados aos 60 dias foram ganho de peso, consumo da dieta, consumo em proteína da dieta, conversão alimentar, taxa de eficiência proteica e índice de sobrevivência. Os resultados foram submetidos à análise de variância e ao teste de Duncan (95% de precisão). Os resultados encontrados não apresentaram interação entre proteína e energia digestível para nenhum parâmetro avaliado. em relação à proteína digestível, foram verificadas diferenças nos parâmetros consumo em proteína da dieta e taxa de eficiência proteica (TEP), o que demonstra ineficiência das dietas com altos valores proteicos. Deve-se oferecer aos girinos de rã-touro dietas com 27% de proteína digestível, por apresentarem melhor resultado para taxa de eficiência proteica e para consumo em proteína da dieta.
Resumo:
This study aimed to evaluate the effects of salinity in the growth and nitrogen fixation in leucaena. Plants were cultivated in Leonard pots containing clean and sterilized sand. The treatments were distributed in a completely randomized design, in a 3x3 factorial, with five replicates. The first factor corresponded to no inoculation and inoculation with Bradyrhizobium sp SEMIA 6070 and SEMIA 6153 strains. The second factor corresponded to NaCl concentrations: 0, 25 and 50 mol m(-3). Were analyzed the height and dry matter accumulation, the number of nodules and nitrogen in plants. The inoculation of plants with the strain SEMIA 6070 provided higher growth and greater nitrogen accumulation in plants thar were not subject to salinity. Nodulation was not affected by salinity. Inoculation with SEMIA 6153 strain provided greater tolerance to salinity.
Resumo:
The drug targeting has been the subject of extensive studies in order to develop site-specific treatments that minimize side effects and become more effective anticancer therapy. Despite considerable interest in this class, drugs like antibiotics also have limitations, and have been neglected. Using new pharmaceutical technologies, the use of magnetic vectors appear as promising candidate for drug delivery systems in several studies. Small magnetic particles bound to the drug of interest can be modulated according to the orientation of a magnet outside the body, locating and holding in a specific site. In this work, we propose the use of High Energy Milling (HEM) for synthesis of a magnetic vector with characteristics suitable for biomedical applications by intravenous administration, and for the formation of an oxacillin-carrier complex to obtain a system for treating infections caused by Staphylococcus aureus. The results of the variation of milling time showed that the size and structural properties of the formed material change with increasing milling time, and in 60 hours we found the sample closest to the ideal conditions of the material. The vector-drug system was studied in terms of structural stability and antimicrobial activity after the milling process, which revealed the integrity of the oxacillin molecule and its bactericidal action on cultures of Staphylococcus aureus ATCC
Resumo:
A study was made to compare dry matter, crude protein and gross energy digestibility of corn silage, associated to concentrate, through in vitro and in vivo digestion techniques. A completely randomized design was used, with two treatments and nine replications, involving three assays. The in vivo digestion assay was conducted with 12 Holstein heifers, on a 24 h permanent sample collection. The in vitro digestion assay was achieved with three collection methods: manual (M), vacuum pump (VP) and nasoesophagic (N). The collection methods VP and M can he used to determine the dry matter digestibility, instead of in vivo method, for the present study ration. The digestion methods influenced the DM, CP and GE digestibility for the studied ration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)